Inicio  /  Applied Sciences  /  Vol: 9 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

Image Classification for Automated Image Cross-Correlation Applications in the Geosciences

Niccolò Dematteis    
Daniele Giordan and Paolo Allasia    

Resumen

This study proposes a method that enables the automatic application of image cross-correlation when monitoring any displacements in the geosciences. As such, it solves one of the main current image processing issues: The requirement of manual image selection. The method reduces the need for extensive financial and human resources when conducting surveys, and it can be applied in a preventive warning context.

 Artículos similares

       
 
Nadia Brancati and Maria Frucci    
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ... ver más
Revista: Information

 
Jie Ren, Changmiao Li, Yaohui An, Weichuan Zhang and Changming Sun    
Few-shot fine-grained image classification (FSFGIC) methods refer to the classification of images (e.g., birds, flowers, and airplanes) belonging to different subclasses of the same species by a small number of labeled samples. Through feature representa... ver más
Revista: AI

 
Md Easin Hasan and Amy Wagler    
Neuroimaging experts in biotech industries can benefit from using cutting-edge artificial intelligence techniques for Alzheimer?s disease (AD)- and dementia-stage prediction, even though it is difficult to anticipate the precise stage of dementia and AD.... ver más
Revista: AI

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Romy Müller, Marcel Dürschmidt, Julian Ullrich, Carsten Knoll, Sascha Weber and Steffen Seitz    
Deep neural networks are powerful image classifiers but do they attend to similar image areas as humans? While previous studies have investigated how this similarity is shaped by technological factors, little is known about the role of factors that affec... ver más
Revista: Applied Sciences