ARTÍCULO
TITULO

Ocean Acidification Impedes Foraging Behavior in the Mud Snail Ilyanassa obsoleta

Maria Manz    
Joshua Lord and Melissa Morales    

Resumen

Ocean acidification may diminish the response of many marine organisms to chemical cues that can be used to sense nearby food and predators, potentially altering community dynamics. We used a Y-maze choice experiment to investigate the impact of ocean acidification on the ability of mud snails (Ilyanassa obsoleta) to sense food cues in seawater. Mud snails have a well-adapted chemosensory system and play an important role in estuarine ecosystem functioning. Our results showed substantially diminished foraging success for the mud snail under acidified conditions, as snails typically moved towards the food cue in controls (pH 8.1) and away from it in acidified treatments (pH 7.6). These results, coupled with previous work, clearly demonstrate the magnitude at which ocean acidification may impair foraging efficiency, potentially resulting in severe alterations in future ecosystem dynamics.

Palabras claves

 Artículos similares

       
 
Tan Hengjie, Simon Kumar Das, Nur Farah Ain Zainee, Raja Yana and Mohammad Rozaimi    
This systematic review aimed to synthesise the existing studies regarding the effects of ocean acidification (OA) on seaweed aquaculture. Ocean acidification scenarios may increase the productivity of aquacultured seaweeds, but this depends on species-sp... ver más

 
He Li, John Beardall and Kunshan Gao    
The marine picocyanobacterium Synechococcus accounts for a major fraction of the primary production across the global oceans. However, knowledge of the responses of Synechococcus to changing pCO2 and light levels has been scarcely documented. Hence, we g... ver más
Revista: Water

 
Yong-Woo Lee, Yong Hwa Oh, Sang Heon Lee, Dohyun Kim and DongJoo Joung    
To investigate the factors affecting water quality in coastal regions with sea dike constructions, surface water outside a sea dike was monitored for six years from 2015 to 2020 in the Saemangeum region of Korea. Statistical analyses of the six years of ... ver más

 
Davide Asnicar and Maria Gabriella Marin    
The continuous release of CO2 in the atmosphere is increasing the acidity of seawater worldwide, and the pH is predicted to be reduced by ~0.4 units by 2100. Ocean acidification (OA) is changing the carbonate chemistry, jeopardizing the life of marine or... ver más

 
Valentina Esposito, Rocco Auriemma, Cinzia De Vittor, Federica Relitti, Lidia Urbini, Martina Kralj and Maria Cristina Gambi    
Ocean acidification (OA), one of the main climate-change-related stressors linked to increasing CO2 concentration in the atmosphere, is considered an important threat to marine biodiversity and habitats. Studies on CO2-vents systems, naturally acidified ... ver más