Inicio  /  Applied Sciences  /  Vol: 9 Par: 22 (2019)  /  Artículo
ARTÍCULO
TITULO

A New Approach of Hybrid Bee Colony Optimized Neural Computing to Estimate the Soil Compression Coefficient for a Housing Construction Project

Pijush Samui    
Nhat-Duc Hoang    
Viet-Ha Nhu    
My-Linh Nguyen    
Phuong Thao Thi Ngo and Dieu Tien Bui    

Resumen

In the design phase of housing projects, predicting the settlement of soil layers beneath the buildings requires the estimation of the coefficient of soil compression. This study proposes a low-cost, fast, and reliable alternative for estimating this soil parameter utilizing a hybrid metaheuristic optimized neural network (NN). An integrated method of artificial bee colony (ABC) and the Levenberg?Marquardt (LM) algorithm is put forward to train the NN inference model. The model is capable of delivering the response variable of soil compression coefficient a set of physical properties of soil. A large-scale real-life urban project at Hai Phong city (Vietnam) was selected as a case study. Accordingly, a dataset of 441 samples with their corresponding testing values of the compression coefficient has been collected and prepared during the construction phase. Experimental outcomes confirm that the proposed NN model with the hybrid ABC-LM training algorithm has attained the highly accurate estimation of the soil compression coefficient with root mean square error (RMSE) = 0.008, mean absolute percentage error (MAPE) = 10.180%, and coefficient of determination (R2) = 0.864. Thus, the proposed machine learning method can be a promising tool for geotechnical engineers in the design phase of housing projects.

 Artículos similares

       
 
Afzaal Hassan, Mark Wallace, Irene Moser and Daniel D. Harabor    
Ridesharing effectively tackles urban mobility challenges by providing a service comparable to private vehicles while minimising resource usage. Our research primarily concentrates on dynamic ridesharing, which conventionally involves connecting drivers ... ver más
Revista: Information

 
Theodore Andronikos and Alla Sirokofskich    
In the dynamic landscape of digital information, the rise of misinformation and fake news presents a pressing challenge. This paper takes a completely new approach to verifying news, inspired by how quantum actors can reach agreement even when they are s... ver más
Revista: Information

 
Pietro Roncioni, Marco Marini, Oscar Gori, Roberta Fusaro and Nicole Viola    
The request for faster and greener civil aviation is urging the worldwide scientific community and aerospace industry to develop a new generation of supersonic aircraft, which are expected to be environmentally sustainable and to guarantee a high-level p... ver más
Revista: Aerospace

 
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences

 
Anika Stelzl and Daniela Fuchs-Hanusch    
Austria?s water utilities are facing new challenges due to advancing climate change. In recent years, changes in water demand have been observed. Water demand forecast models are required to assess these changes and react to them in a sustainable way. In... ver más
Revista: Water