Inicio  /  Algorithms  /  Vol: 13 Par: 12 (2020)  /  Artículo
ARTÍCULO
TITULO

Applying Neural Networks in Aerial Vehicle Guidance to Simplify Navigation Systems

Raúl de Celis    
Pablo Solano and Luis Cadarso    

Resumen

The Guidance, Navigation and Control (GNC) of air and space vehicles has been one of the spearheads of research in the aerospace field in recent times. Using Global Navigation Satellite Systems (GNSS) and inertial navigation systems, accuracy may be detached from range. However, these sensor-based GNC systems may cause significant errors in determining attitude and position. These effects can be ameliorated using additional sensors, independent of cumulative errors. The quadrant photodetector semiactive laser is a good candidate for such a purpose. However, GNC systems? development and construction costs are high. Reducing costs, while maintaining safety and accuracy standards, is key for development in aerospace engineering. Advanced algorithms for getting such standards while eliminating sensors are cornerstone. The development and application of machine learning techniques to GNC poses an innovative path for reducing complexity and costs. Here, a new nonlinear hybridization algorithm, which is based on neural networks, to estimate the gravity vector is presented. Using a neural network means that once it is trained, the physical-mathematical foundations of flight are not relevant; it is the network that returns dynamics to be fed to the GNC algorithm. The gravity vector, which can be accurately predicted, is used to determine vehicle attitude without calling for gyroscopes. Nonlinear simulations based on real flight dynamics are used to train the neural networks. Then, the approach is tested and simulated together with a GNC system. Monte Carlo analysis is conducted to determine performance when uncertainty arises. Simulation results prove that the performance of the presented approach is robust and precise in a six-degree-of-freedom simulation environment.

 Artículos similares

       
 
José-Luis Solorio-Ramírez, Raúl Jiménez-Cruz, Yenny Villuendas-Rey and Cornelio Yáñez-Márquez    
Over time, human beings have built increasingly large astronomical observatories to increase the number of discoveries related to celestial objects. However, the amount of collected elements far exceeds the human capacity to analyze findings without help... ver más
Revista: Algorithms

 
Binghang Lu, Christian Moya and Guang Lin    
This paper presents NSGA-PINN, a multi-objective optimization framework for the effective training of physics-informed neural networks (PINNs). The proposed framework uses the non-dominated sorting genetic algorithm (NSGA-II) to enable traditional stocha... ver más
Revista: Algorithms

 
Hristo Tonchev and Petar Danev    
In this work, the quantum random walk search algorithm with a walk coin constructed by generalized Householder reflection and phase multiplier has been studied. The coin register is one qudit with an arbitrary dimension. Monte Carlo simulations, in combi... ver más
Revista: Algorithms

 
Valeria Mercuri, Martina Saletta and Claudio Ferretti    
As the prevalence and sophistication of cyber threats continue to increase, the development of robust vulnerability detection techniques becomes paramount in ensuring the security of computer systems. Neural models have demonstrated significant potential... ver más
Revista: Algorithms

 
Fatemeh Gholami, Zahed Rahmati, Alireza Mofidi and Mostafa Abbaszadeh    
In recent years, machine learning approaches, in particular graph learning methods, have achieved great results in the field of natural language processing, in particular text classification tasks. However, many of such models have shown limited generali... ver más
Revista: Algorithms