Resumen
The records of 24,797 traffic accidents (9039 involving fatalities or severe injury) during rainy conditions from 2007 to 2017 in Seoul, South Korea, were used to analyze the spatial distribution of the traffic accidents and rainfall events based on radar and gauge rainfall data. According to the spatial correspondence analysis between rainfall distribution and accident locations for localized and stratiform rain events, radar data in a two-dimensional grid (250 by 250 m) of 10 min temporal resolution benefited the localized rainfall distribution concerning the accident location. The relative accident rate (RAR) from radar data, which was used as a quantitative reference value for the effect of rainfall on traffic accidents, was about 18% higher than that from gauge rainfall. The radar data more clearly classified the number of traffic accidents during rainy conditions because its spatial distribution was more precise for all accidents. In addition, the RAR estimation of accidents involving fatalities and severe injury during rainfall could provide information on the district in which traffic accidents increase due to rainfall. The study results support the adoption of radar-derived rainfall data to analyze the influence of rainfall on accidents and the development of more accurate risk-assessment tools for drivers and planners.