Resumen
COVID-19 has raised the issue of fighting epidemics. We were able to realize that in this fight, countering the spread of the disease was the main goal and we propose to contribute to it. To achieve this, we propose an enriched model of Random Forest (RF) that we called RF EP (EP for Epidemiological Prediction). RF is based on the Forest RI algorithm, proposed by Leo Breiman. Our model (RF EP) is based on a modified version of Forest RI that we called Forest EP. Operations added on Forest RI to obtain Forest EP are as follows: the selection of significant variables, the standardization of data, the reduction in dimensions, and finally the selection of new variables that best synthesize information the algorithm needs. This study uses a data set designed for classification studies to predict whether a patient is suffering from COVID-19 based on the following 11 variables: Country, Age, Fever, Bodypain, Runny_nose, Difficult_in_breathing, Nasal_congestion, Sore_throat, Gender, Severity, and Contact_with_covid_patient. We compared default RF to five other machine learning models: GNB, LR, SVM, KNN, and DT. RF proved to be the best classifier of all with the following metrics: Accuracy (94.9%), Precision (94.0%), Recall (96.6%), and F1 Score (95.2%). Our model, RF EP, produced the following metrics: Accuracy (94.9%), Precision (93.1%), Recall (97.7%), and F1 Score (95.3%). The performance gain by RF EP on the Recall metric compared to default RF allowed us to propose a new model with a better score than default RF in the limitation of the virus propagation on the dataset used in this study.