Resumen
Mixed-integer linear programming is adopted to translate the routing of service operation vessels that support the logistic aspects of the maintenance of offshore floating wind farms into mathematical language. The models attempt to help the decision-makers by providing quantified tools to screen out the optimal planning for preventive maintenance. The models search for the optimal offshore base location, vessel?s routing per day, vessel?s capacity, and vessel fleet composition that minimize the total fixed and variable infrastructure cost. The integration of the vehicle fleet size and mix problem, facility location?allocation problem, and vehicle-routing problem with time window advances the state of the art. A realistic case study is shown, and the results and discussions demonstrated that the practical insights of the solutions, as well as the identification of the route patterns through a navigation route table, may improve the decision planning of preventive maintenance.