Resumen
Essential oils have been advertised endlessly to be very beneficial for the health of humans, and an extensive amount of research examines the validity of such claims. In contribution, the current study evaluates the neuroprotective properties of Citronellol and Geraniol essential oils (EOs). In relationship to the biophysical gating properties of different the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the EOs were administered to HEK293 (Human embryonic kidney 293) cells and examined for any inhibition and effect on desensitization or deactivation rates, using whole-cell patch-clamp electrophysiology. Our results demonstrated the highest levels of inhibition from Citronellol oil by four-fold on all AMPARs subunits. Likewise, Geraniol oil had a similar inhibiting impact on the receptors, and both oils decreased the desensitization and deactivation rates of the inhibited receptors. Thus, the examined EOs of this study portray neuroprotective qualities by targeting AMPARs activation and reducing desensitization and deactivation rates. Finally, the results of the current study entail a better understanding of AMPARs, provides a natural template for future drug synthesis to treat neurological diseases associated with excessive AMPAR activation, and offers a possible mechanism by which these essential oils deploy their ?calming? effect.