Inicio  /  Hydrology  /  Vol: 5 Par: 2 (2018)  /  Artículo
ARTÍCULO
TITULO

Impact of Land Use Change on Flow and Sediment Yields in the Khokana Outlet of the Bagmati River, Kathmandu, Nepal

Bijay K. Pokhrel    

Resumen

Land use changes are a key factor for altering hydrological response, and understanding its impacts can help to develop a sustainable and pragmatic strategy in order to preserve a watershed. The objective of this research is to estimate the impact of land use changes on Bagmati river discharge and sediment yield at the Khokana gauging station of the Kathmandu valley outlet. This study analyzes the impact of land use changes from the year 2000 to 2010 using a semi-distributed hydrological, Soil Water Assessment Tool (SWAT) model. The Load Estimator (LOADEST) simulates sediment loads on limited available sediment data. Sensitivity analysis is performed using the ParaSole (Parameter Solution) method within SWAT Calibration and Uncertainty Procedure (SWAT-CUP), which shows that Linear parameters for calculating the maximum amount of sediment that can be re-entrained during channel sediment routing is a most sensitive parameter that affect the hydrological response of the watershed. Monthly discharge and sediment data from 1995 to 2002 are used for calibration and remaining monthly discharge and sediment data from 2003 to 2010 are used for validation. Four statistical parameters including the Coefficient of Determination (R2), Nash?Sutcliffe Efficiency (NSE), RMSE-observations? standard deviation ratio (RSR), and Percentage Bias (PBIAS) are estimated in order to evaluate the model performance. The results show a very good agreement between monthly measured and simulated discharge data as indicated by R2 = 0.88, NSE = 0.90, RSR = 0.34, and PBIAS = 0.03. The model shows nearly the same performance also with sediment data. The land use change data shows about a 6% increase in built-up areas from the years 2000 to 2010, whereas the remaining areas such as Forest, Shrub, Grass, Agriculture, Open Field, and Rivers/Lakes are decreased. The surface runoff contribution to stream flow and sediment yields are increased by 27% and 5% respectively. In the contrary, lateral flow contribution to stream flow and groundwater contribution to stream flow are decreased by 25% and 21%, respectively.

 Artículos similares

       
 
Zhongzhen Yang, Jionghao Li, Wenyuan Zhou, Feng Lian     Pág. 187 - 214
This study explores the optimal subsidy policy to maximize the benefits associated with the suburbanization of university campuses. A transport accessibility index is introduced, and a model is developed to analyze faculty housing relocation, incorporati... ver más

 
Yinghui Zhao, Mengyuan Jiang, Jing Cheng and Congfeng Jiang    
This paper analyzes the spatiotemporal changes and patterns of a regional water environment based on the hydrological and water quality monitoring times and the geographical locations of the monitoring sections in the research area, the plain of Cixi, ea... ver más
Revista: Water

 
Kevin MacKenzie, Steve Auger, Sara Beitollahpour and Bahram Gharabaghi    
Stream corridor erosion can majorly contribute to the overall sediment and phosphorus load in urbanizing watersheds. However, the relative contribution of stream bed and bank erosion, compared with upland watershed sources and the potential for stream re... ver más
Revista: Water

 
Jun Du, Yaseen Laghari, Yi-Chang Wei, Linyi Wu, Ai-Ling He, Gao-Yuan Liu, Huan-Huan Yang, Zhong-Yi Guo and Shah Jahan Leghari    
Groundwater is an important natural resource in the North China Plain (NCP) with high economic benefits and social significance. It fulfills 60% of drinking and 70% of irrigation water requirements. In this review, the information is retrieved from high-... ver más
Revista: Water

 
Dimitrios Kalfas, Stavros Kalogiannidis, Olympia Papaevangelou and Fotios Chatzitheodoridis    
The complex interplay between land use planning, water resource management, and the effects of global climate change continues to attract global attention. This study assessed the connection between land use planning, water resources, and global climate ... ver más
Revista: Water