ARTÍCULO
TITULO

Numerical Study on Flexible Pipe End Fitting Progressive Failure Behavior Based on Cohesive Zone Model

Tao Zhang    
Qingzhen Lu    
Jun Yan    
Shichao Wang    
Qianjin Yue    
Shanghua Wu    
Hailong Lu and Jinlong Chen    

Resumen

Flexible pipes are extensively used to connect seabed and floating production systems for the development of deep-water oil and gas. In the top connection area, end fitting (EF) is the connector between the flexible pipe and floating platform, as a critical component for structural failure. To address this issue, a combined numerical and experimental prediction method is proposed in this paper to investigate the failure behavior of flexible pipes EF considering tensile armor and epoxy resin debonding. In order to analyze the stress distribution of the tensile armor and the damage state of the bonding interface as the tensile load increases, a finite element model of the EF anchorage system is established based on the cohesive zone model (CZM). Additionally, the effects of the epoxy resin shear strength (ss) and the steel wire yield strength (ys) on the structural load-bearing capacity are discussed in detail. The results indicate that wire strength and interface bonding have a substantial effect on the anchorage system?s failure behavior, and the low-strength wire anchorage system has a three-stage failure behavior with wire yielding as the predominant failure mode, while the high-strength wire anchorage system has a two-stage failure behavior with interface debonding as the predominant failure mode.