ARTÍCULO
TITULO

Sliding Mode Control in Backstepping Framework for a Class of Nonlinear Systems

He Shen    
Joseph Iorio and Ni Li    

Resumen

Both backstepping control (BC) and sliding mode control (SMC) have been studied extensively over the past few decades, and many variations of controller designs based on them can be found in the literature. In this paper, sliding mode control in a backstepping framework (SBC) for a class of nonlinear systems is proposed and its connections to SMC studied. SMC is shown to be a special case of SBC. Without losing generality, the regulation control problem is studied, while tracking control is achieved by replacing the states with the difference between the states and their desired values. The SBCs are designed for nonlinear single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) systems with the presence of bounded uncertainties from unmodeled dynamics, parametric variations, disturbances, and measurement noise, and the closed loop systems are proven to be asymptotically stable using the Lyapunov stability theory. The comparison of SBC to SMC from the design process, chattering effects, and chatter reduction are also discussed. SBC inherits the merits of backstepping control in choosing gains independently, while leveraging useful nonlinear dynamics for controller design simplification. Hence, it provides more flexibility in controller design in the sense of controlling coverage speed and making use of useful nonlinearities in the dynamics. To demonstrate the effectiveness of SBC, an application on cruise tracking control of an autonomous underwater vehicle was studied.

 Artículos similares

       
 
Qi Hong, Tianyi Zhou and Junde Qi    
Polishing force is one of the key process parameters in the polishing process of blisk blades, and its control accuracy will affect the surface quality and processing accuracy of the workpiece. The contact mechanism between the polishing surface and flap... ver más
Revista: Applied Sciences

 
Yongyong Zhao, Jinghua Wang, Guohua Cao and Xu Yao    
This study introduces a reduced-order leg dynamic model to simplify the controller design and enhance robustness. The proposed multi-loop control scheme tackles tracking control issues in legged robots, including joint angle and contact-force regulation,... ver más
Revista: Applied Sciences

 
Sheng Liu, Jian Song, Lanyong Zhang and Yinchao Tan    
The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target c... ver más

 
Hang Ding, Dongdong Wang, Chuanjun Li, Xiao Liang and Xingcheng Li    
The target can deceive the flight vehicle by releasing an infrared decoy to make the line-of-sight (LOS) angle rate deflect greatly, thus causing the flight vehicle to miss the target. Therefore, in order to accurately strike the target in complex advers... ver más
Revista: Aerospace

 
Sunghun Jung    
Unmanned aerial vehicles (UAVs) are extensively employed in civilian and military applications because of their excellent maneuverability. Achieving fully autonomous quadrotor flight and precision landing on a wireless charging station in the presence of... ver más
Revista: Aerospace