Resumen
This paper presents a general method, called ?self-parameterization?, for designing one-dimensional (1-D) chaotic maps that provide wider chaotic regions compared to existing 1-D maps. A wide chaotic region is a desirable property, as it helps to provide robust performance by enlarging the design space in many hardware-security applications, including reconfigurable logic and encryption. The proposed self-parameterization scheme uses only one existing chaotic map, referred to as the seed map, and a simple transformation block. The effective control parameter of the seed map is treated as an intermediate variable derived from the input and control parameter of the self-parameterized map, under some constraints, to achieve the desired functionality. The widening of the chaotic region after adding self-parameterization is first demonstrated on three ideal map functions: Logistic; Tent; and Sine. A digitized version of the scheme was developed and realized in a field-programmable gate array (FPGA) implementation. An analog version of the proposed scheme was developed with very low transistor-count analog topologies for hardware-constrained integrated circuit (IC) implementation. The chaotic performance of both digital and analog implementations was evaluated with bifurcation plots and four established chaotic entropy metrics: the Lyapunov Exponent; the Correlation Coefficient; the Correlation Dimension; and Approximate Entropy. An application of the proposed scheme was demonstrated in a random number generator design, and the statistical randomness of the generated sequence was verified with the NIST test.