ARTÍCULO
TITULO

Storm Surge Forecasting along Korea Strait Using Artificial Neural Network

Youngmin Park    
Euihyun Kim    
Youngjin Choi    
Gwangho Seo    
Youngtaeg Kim and Hokyun Kim    

Resumen

Typhoon attacks on the Korean Peninsula have recently become more frequent, and the strength of these typhoons is also gradually increasing because of climate change. Typhoon attacks cause storm surges in coastal regions; therefore, forecasts that enable advanced preparation for these storm surges are important. Because storm surge forecasts require both accuracy and speed, this study uses an artificial neural network algorithm suitable for nonlinear modeling and rapid computation. A storm surge forecast model was created for five tidal stations on the Korea Strait (southern coast of the Korean Peninsula), and the accuracy of its forecasts was verified. The model consisted of a deep neural network and convolutional neural network that represent the two-dimensional spatial characteristics. Data from the Global Forecast System numerical weather model were used as input to represent the spatial characteristics. The verification of the forecast accuracy revealed an absolute relative error of =5% for the five tidal stations. Therefore, it appears that the proposed method can be used for forecasts for other locations in the Korea Strait. Furthermore, because accurate forecasts can be computed quickly, the method is expected to provide rapid information for use in the field to support advance preparation for storm surges.

 Artículos similares

       
 
Seung-Won Suh and Myeong-Hee Lee    
The vulnerability to coastal disasters resulting from storm surges and wave overtopping (WOT) during typhoon intrusions is significantly escalating due to rising sea levels. In particular, coastal seawalls constructed along the coast through engineered a... ver más

 
Xiaoxiao Gou, Huidi Liang, Tinglu Cai, Xinkai Wang, Yining Chen and Xiaoming Xia    
Coastal evolutions are expected to have a significant impact on storm tides, disproportionately aggravating coastal flooding. In this study, we utilize a nested storm tide model to provide an integrated investigation of storm tide responses to changes in... ver más

 
Moleni Tu?uholoaki, Antonio Espejo, Moritz Wandres, Awnesh Singh, Herve Damlamian and Zulfikar Begg    
The South Pacific region is characterised by steep shelves and fringing coral reef islands. The lack of wide continental shelves that can dissipate waves makes Pacific Island countries vulnerable to large waves that can enhance extreme total water levels... ver más

 
Stephen C. Medeiros    
Mangroves are a natural feature that enhance the resilience of natural and built coastal environments worldwide. They mitigate the impacts of hurricanes by dissipating energy from storm surges and waves, as well as reducing wind speeds. To incorporate ma... ver más

 
Dan Meng, Yueming Liu, Zhihua Wang, Xiaomei Yang, Xiaoliang Liu, Junyao Zhang and Ku Gao    
From 2000 to 2020, storm surges occurred 397 times in China, resulting in direct economic losses of up to CNY 220.64 billion. Storm surges not only threaten safety but also cause property damage; hence, it is necessary to assess the changes in vulnerabil... ver más