Resumen
Aiming towards a better understanding of the flow field around a fully appended Joubert BB2 submarine model, and in order to complement the experimental investigations of the wake of the hydroplanes and sail, large eddy simulation (LES) with the dynamic Smagorinsky model was conducted. Three sets of grids with a maximum grid number of up to 228 million were designed to perform the LES simulation for the Joubert BB2 under 10° yaw conditions, with a freestream Reynolds number based on the local freestream velocity and a hull length of ReL = 2.2 × 107. Comparisons of the wake of the cruciform appendage were made with experiments to verify the computational accuracy and to examine the influence of the spatial resolution. A satisfactory result was more representative of the experiments with the improvement in grid spatial resolution. The evolution characteristics of three co-rotating vortices originating from the cruciform appendage under the most refined grid arrangement are further described in detail under straight-ahead and 10° yaw conditions. The comparison results show that, in the core-flow region, the resultant velocity, vorticity magnitude, and TKE were stronger and the wake was more complicated under 10° yaw conditions. Tip vortex tracking under 10° yaw conditions exhibited significant three-dimensional characteristics as the wake developed downstream.