Inicio  /  Agriculture  /  Vol: 13 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Application of Machine Learning to Study the Agricultural Mechanization of Wheat Farms in Egypt

Hassan A. A. Sayed    
Qishuo Ding    
Mahmoud A. Abdelhamid    
Joseph O. Alele    
Alfadhl Y. Alkhaled and Mohamed Refai    

Resumen

Agricultural production can achieve sustainability by appropriately applying agricultural mechanization, especially in developing countries where smallholding farmers lack sufficient agricultural machinery for their farming operations. This paper aimed to study the extent to which small-, medium-, and large-scale farms in the Delta of Egypt use agricultural mechanization in their wheat crop farming operations. K-means clustering was used to aggregate and analyze the scenarios implemented by farmers for wheat cultivation so as to suggest guidelines for each cluster of farmers on how to mechanize their indoor wheat agricultural operations to maximize production. The study is divided into two parts: Firstly, data were collected regarding the percentage of small, medium, and large farms; the cultivated area of wheat crops in small-, medium-, and large-scale farms; and the size of tractors, as an indicator of the mechanization available in the governorates of Egypt?s Delta. Secondly, data were collected through a questionnaire survey of 2652 smallholding farmers, 328 medium-holding farmers, and 354 large-holding farmers from Egypt?s Delta governorates. Based on the surveyed data, 14, 14, and 12 scenarios (indexes) were established for small-, medium-, and large-scale farms, respectively, related to various agricultural operations involved in wheat crop production. These scenarios were analyzed based on the centroids using K-means clustering. The identified scenarios were divided into three clusters for the three levels of farms. The data obtained showed the need for smallholding farmers to implement mechanization, which could be achieved through renting services. These findings, if implemented, would have huge social and economic effects on farmers? lives, in addition to increasing production, saving time and effort, and reducing dependence on labor.

 Artículos similares

       
 
Luana Centorame, Thomas Gasperini, Alessio Ilari, Andrea Del Gatto and Ester Foppa Pedretti    
Machine learning is a widespread technology that plays a crucial role in digitalisation and aims to explore rules and patterns in large datasets to autonomously solve non-linear problems, taking advantage of multiple source data. Due to its versatility, ... ver más
Revista: Agronomy

 
Carlos Alejandro Perez Garcia, Marco Bovo, Daniele Torreggiani, Patrizia Tassinari and Stefano Benni    
The escalating global population and climate change necessitate sustainable livestock production methods to meet rising food demand. Precision Livestock Farming (PLF) integrates information and communication technologies (ICT) to improve farming efficien... ver más
Revista: Agriculture

 
Gelsomina Manganiello, Nicola Nicastro, Luciano Ortenzi, Federico Pallottino, Corrado Costa and Catello Pane    
Fusarium oxysporum f. sp. lactucae is one of the most aggressive baby-lettuce soilborne pathogens. The application of Trichoderma spp. as biocontrol agents can minimize fungicide treatments and their effective targeted use can be enhanced by support of d... ver más
Revista: Agriculture

 
Huiru Zhou, Qiang Lai, Qiong Huang, Dingzhou Cai, Dong Huang and Boming Wu    
The severity of rice blast and its impacts on rice yield are closely related to the inoculum quantity of Magnaporthe oryzae, and automatic detection of the pathogen spores in microscopic images can provide a rapid and effective way to quantify pathogen i... ver más
Revista: Agriculture

 
Mykhailo Lohachov, Ryoji Korei, Kazuo Oki, Koshi Yoshida, Issaku Azechi, Salem Ibrahim Salem and Nobuyuki Utsumi    
This article investigates approaches for broccoli harvest time prediction through the application of various machine learning models. This study?s experiment is conducted on a commercial farm in Ecuador, and it integrates in situ weather and broccoli gro... ver más
Revista: Agronomy