Inicio  /  Coatings  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Fault Diagnosis of Check Valve Based on KPLS Optimal Feature Selection and Kernel Extreme Learning Machine

Xuyi Yuan    
Yugang Fan    
Chengjiang Zhou    
Xiaodong Wang and Guanghui Zhang    

Resumen

The check valve is the core part of high-pressure diaphragm pumps. It has complex operation conditions and has difficulty characterizing fault states completely with its single feature. Therefore, a fault signal diagnosis model based on the kernel extreme learning machine (KELM) was constructed to diagnose the check valve. The model adopts a multi-feature extraction method and reduces dimensionality through kernel partial least squares (KPLS). Firstly, we divided the check valve vibration signal into several non-overlapping samples. Then, we extracted 16 time-domain features, 13 frequency-domain features, 16 wavelet packet energy features, and energy entropy features from each sample to construct a multi-feature set characterizing the operation state of the check valve. Next, we used the KPLS method to optimize the 45 dimension multi-feature data and employed the processed feature set to establish a KELM fault diagnosis model. Experiments showed that the method based on KPLS optimal feature selection could fully characterize the operating state of the equipment with an accuracy rate of 96.88%. This result indicates the high accuracy and effectiveness of the multi-feature set constructed with the KELM fault diagnosis model.

Palabras claves