Inicio  /  Applied Sciences  /  Vol: 11 Par: 13 (2021)  /  Artículo
ARTÍCULO
TITULO

Characterizations of a Plasma-Water System Generated by Repetitive Microsecond Pulsed Discharge with Air, Nitrogen, Oxygen, and Argon Gases Species

Nima Bolouki    
Wen-Hui Kuan    
Yu-Yun Huang and Jang-Hsing Hsieh    

Resumen

A non-thermal plasma-water system using a microsecond pulsed high-voltage power supply was investigated with air, nitrogen, oxygen, and argon gas feedings individually. Optical emission spectroscopy (OES) was utilized to characterize the primary active species inside the plasmas generated by different gas feedings. The OES method was also employed to estimate the neutral gas and electron temperatures. The pH and the oxidation-reduction potential (ORP) of plasma-activated water (PAW) were measured in the liquid phase. An ion chromatography system (ICS) was employed to present the PAW activity, such as nitrite and nitrate species. Moreover, hydrogen peroxide as a secondary active species inside the activated water, generated by the gases mentioned above, was measured by potassium permanganate titration. It was found that the gas species have a noticeable effect on the pH level as well as the ORP of PAW. In the cases of argon and oxygen plasmas, the pH level of PAW does not change significantly. In contrast, the pH values of PAW generated by air and nitrogen plasmas decline sharply during the treatment time. Moreover, the gas species have a significant impact on the concentrations of nitrite, nitrate, and hydrogen peroxide generated in PAW. The activated water generated by oxygen plasma provides the highest level of hydrogen peroxide. Although the consumed power of argon plasmas was half of the other plasma sources, it provides relatively high hydrogen peroxide contents compared to the nitrogen and air plasmas.

 Artículos similares

       
 
Shengtao Chen, Yuhan Zhang, Tianyu Su and Yongjun Gong    
The initial running speed of the pig during gas?liquid two-phase pipeline pigging can significantly influence the velocities of both gas and liquid phases within the pipeline. However, due to the complexity and limited understanding of these velocity var... ver más

 
Martynas Drazdauskas and Sergejus Lebedevas    
The capability of operational marine diesel engines to adapt to renewable and low-carbon fuels is considered one of the most influential methods for decarbonizing maritime transport. In the medium and long term, ammonia is positively valued among renewab... ver más

 
Chengcheng Peng, Hengfei Li, Nan Yang and Mingzhi Lu    
Peatlands store large amounts of carbon in wetland ecosystems. The hydrological conditions within peatlands are important factors that affect the biochemical cycle and patterns of greenhouse gas emissions in these peatlands. This study was carried out in... ver más
Revista: Water

 
Xianshan Liu, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li and Yuhua Pan    
The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal... ver más
Revista: Water

 
Jan Kolínský, Tomá? Prá?il, Ladislav Socha, Jana Svi?elová, Karel Gryc, Josef Häusler and Martin Dvorák    
The present paper describes a comparison of the efficiency of different types of rotors used in the refining of aluminium melt at a foundry degassing unit (FDU). Physical modelling was used to obtain data for six different rotor types under defined exper... ver más
Revista: Applied Sciences