Resumen
Three-dimensional (3D) buffer analysis is among the basic functions of 3D spatial analysis, and it plays an important role in 3D geographic information systems. The rapid development of the 3D Discrete Global Grid System (DGGS) provides a new method for the 3D spatial analysis of geographic information. According to the spatial topology characteristics of the 3D DGGS and the concept of dimensionality reduction, a 3D buffer analysis method based on the spatial grid of the Earth system is proposed to solve the problem of the buffer algorithm of a space object being unsatisfactory at present. In this paper, we present a method to calculate the distance between cells based on the side length of the spherical grids according to the geometric characteristics of the grids. For the grids of a geographic object, we describe the Euclidean distance expansion algorithm and the radial elevation expansion algorithm that helped us to obtain its 3D buffer. Finally, in terms of algorithm complexity and visualization effect, compared with the traditional raster buffer algorithm, the method presented in this paper has lower complexity, an improved visualization effect, and stronger generality.