ARTÍCULO
TITULO

Path Planning of Unmanned Surface Vehicle Based on Improved Sparrow Search Algorithm

Guangzhong Liu    
Sheng Zhang    
Guojie Ma and Yipeng Pan    

Resumen

In order to solve the problem of many constraints and a complex navigation environment in the path planning of unmanned surface vehicles (USV), an improved sparrow search algorithm combining cubic chaotic map and Gaussian random walk strategy was proposed to plan it. Firstly, in the population initialisation stage, cubic chaotic map was used to replace the random generation method of the traditional sparrow search algorithm to optimise the uneven initial distribution of the population and improve the global search ability of the population. Secondly, in the late iteration of the algorithm, the standard deviation of fitness is introduced to determine whether the population is trapped in the local optimum. If true, the Gaussian random walk strategy is used to perturb the optimal individual and assist the algorithm to escape the local optimum. Thirdly, the chosen water environment is modelled, and the navigation information of the original inland electronic navigation chart (ENC) is preprocessed, gridised, and the obstacle swelling is processed. Finally, the path planning experiments of USV are carried out in an inland ENC grid environment. The experimental results show that, compared with the traditional sparrow search algorithm, the average fitness value of the path planned by improved sparrow search algorithm is reduced by 14.8% and the variance is reduced by 49.9%. The path planned by the algorithm is of good quality and high stability and, combined with ENC, it can provide a reliable path for USV.

 Artículos similares

       
 
Zilin Zhao, Zhi Cai, Mengmeng Chang and Zhiming Ding    
Unconventional events exacerbate the imbalance between regional transportation demand and limited road network resources. Scientific and efficient path planning serves as the foundation for rapidly restoring equilibrium to the road network. In real large... ver más
Revista: Applied Sciences

 
Chuanwei Zhang, Xinyue Yang, Rui Zhou and Zhongyu Guo    
In order to solve the problem of low safety and efficiency of underground mine vehicles, a path planning method for underground mine vehicles based on an improved A star (A*) and fuzzy control Dynamic Window Approach (DWA) is proposed. Firstly, the envir... ver más
Revista: Applied Sciences

 
Siyao Lu, Rui Xu, Zhaoyu Li, Bang Wang and Zhijun Zhao    
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encounterin... ver más
Revista: Aerospace

 
Chenglou Liu, Fangfang Xie and Tingwei Ji    
Formation path planning is a significant cornerstone for unmanned aerial vehicle (UAV) swarm intelligence. Previous methods were not suitable for large-scale UAV formation, which suffered from poor formation maintenance and low planning efficiency. To th... ver más
Revista: Aerospace

 
Yi Zhang, Hengchao Zhao, Zheng Zhang and Hongbo Wang    
Addressing the automatic berthing task for vessels, this study introduces the Flow Matching Double Section Bezier Berth Method (FM-DSB) for handling downstream and upstream berthing instructions. By considering the orientation relationship between the di... ver más