ARTÍCULO
TITULO

Concept Design of the Underwater Manned Seabed Walking Robot

Asghar Khan    
Wang Liquan    
Wang Gang    
Muhammad Imran    
Hafiz Muhammad Waqas and Asad A. Zaidi    

Resumen

In this paper, a novel concept designed of a multi-legged underwater manned seabed walking robot is presented. The robot will be used in both shallow water current (1?2 m/sec) and deep water up to 500 m. It is powered by an external electric power source through tether cable. It walks on the seabed with six legs, which makes it distinct from conventional screw-propelled underwater robots. It can walk calmly without making the water turbid. Two anterior arms act as manipulators. All leg joints and manipulators are controlled by Brushless Direct Current Motors. Motivation for this concept comes from soldier crab that walk mostly forward and has an egg-shaped body. It is operated by a pilot sitting in a pressurized cabin, and promptly control operations of the robot and manipulator. Preliminary design of the pressurized cabin, using an empirical formula, ?ASME PVHO-1 2007? standard, and validation was carried out through ANSYS Workbench. Hydrodynamic forces acting on the robot body and legs are utilized to withstand the water current and external forces to adjust legs and body posture for stability. Buoyancy rules are employed to control its rising and diving motion. All key technologies employed in the development of the robot and their approaching methods are explained. It will provide a safe operation space for humans in underwater operations.

 Artículos similares

       
 
Makrina Viola Kosti, Maurice Benayoun, Nefeli Georgakopoulou, Sotiris Diplaris, Theodora Pistola, Vasileios-Rafail Xefteris, Athina Tsanousa, Kalliopi Valsamidou, Panagiota Koulali, Yash Shekhawat, Piera Sciama, Ilias Kalisperakis, Stefanos Vrochidis and Ioannis Kompatsiaris    
Demographic change confronts us with an ever-increasing number of elderly people who face isolation and socialization issues. Background: The main challenge of this study is to inject emotional and aesthetic aspects into the design process of a virtual r... ver más
Revista: Applied Sciences

 
Andris Slavinskis, Mario F. Palos, Janis Dalbins, Pekka Janhunen, Martin Tajmar, Nickolay Ivchenko, Agnes Rohtsalu, Aldo Micciani, Nicola Orsini, Karl Mattias Moor, Sergei Kuzmin, Marcis Bleiders, Marcis Donerblics, Ikechukwu Ofodile, Johan Kütt, Tõnis Eenmäe, Viljo Allik, Jaan Viru, Pätris Halapuu, Katriin Kristmann, Janis Sate, Endija Briede, Marius Anger, Katarina Aas, Gustavs Plonis, Hans Teras, Kristo Allaje, Andris Vaivads, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Petri Toivanen, Iaroslav Iakubivskyi, Mihkel Pajusalu and Antti TammaddShow full author listremoveHide full author list    
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-v... ver más
Revista: Aerospace

 
Catharina Moreira, Nikolai Herzog and Christian Breitsamter    
Recent developments in electrical Vertical Take-off and Landing (eVTOL) vehicles show the need for a better understanding of transient aero-mechanical propeller loads for non-axial inflow conditions. The variety of vehicle configurations conceptualized w... ver más
Revista: Aerospace

 
Nader Vahdati, Aamna Alteneiji, Fook Fah Yap and Oleg Shiryayev    
Engine mounts serve three primary purposes: (1) to support the weight of the engine, (2) to lessen the transmitted engine disturbance forces to the vehicle structure/chassis or airplane fuselage, and (3) to limit the engine motion brought on by shock exc... ver más
Revista: Applied Sciences

 
Chan-Hoo Kim, Ji-Hyun Choi and Sung-Young Park    
Contaminated autonomous-driving sensors frequently malfunction, resulting in accidents; these sensors need regular cleaning. The autonomous-driving sensor-cleaning nozzle currently used is the windshield-washer nozzle; few studies have focused on the sen... ver más
Revista: Applied Sciences