Inicio  /  Applied Sciences  /  Vol: 13 Par: 19 (2023)  /  Artículo
ARTÍCULO
TITULO

Applying Machine Learning in Retail Demand Prediction?A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning

Mehran Nasseri    
Taha Falatouri    
Patrick Brandtner and Farzaneh Darbanian    

Resumen

In the realm of retail supply chain management, accurate forecasting is paramount for informed decision making, as it directly impacts business operations and profitability. This study delves into the application of tree-based ensemble forecasting, specifically using extra tree Regressors (ETRs) and long short-term memory (LSTM) networks. Utilizing over six years of historical demand data from a prominent retail entity, the dataset encompasses daily demand metrics for more than 330 products, totaling 5.2 million records. Additionally, external variables, such as meteorological and COVID-19-related data, are integrated into the analysis. Our evaluation, spanning three perishable product categories, reveals that the ETR model outperforms LSTM in metrics including MAPE, MAE, RMSE, and R2. This disparity in performance is particularly pronounced for fresh meat products, whereas it is marginal for fruit products. These ETR results were evaluated alongside three other tree-based ensemble methods, namely XGBoost, Random Forest Regression (RFR), and Gradient Boosting Regression (GBR). The comparable performance across these four tree-based ensemble techniques serves to reinforce their comparative analysis with LSTM-based deep learning models. Our findings pave the way for future studies to assess the comparative efficacy of tree-based ensembles and deep learning techniques across varying forecasting horizons, such as short-, medium-, and long-term predictions.

 Artículos similares

       
 
Liang Liu, Tianbin Li and Chunchi Ma    
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo... ver más
Revista: Applied Sciences

 
Antonello Pasini and Stefano Amendola    
Neural network models are often used to analyse non-linear systems; here, in cases of small datasets, we review our complementary approach to deep learning with the purpose of highlighting the importance and roles (linear, non-linear or threshold) of cer... ver más
Revista: Applied Sciences

 
Changhao Wu, Siyang He, Zengshan Yin and Chongbin Guo    
Large-scale low Earth orbit (LEO) remote satellite constellations have become a brand new, massive source of space data. Federated learning (FL) is considered a promising distributed machine learning technology that can communicate optimally using these ... ver más
Revista: Applied Sciences

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Dwaipayan Chakraborty and Subhashis Mallick    
Ocean-water temperature and salinity are two vital properties that are required for weather-, climate-, and marine biology-related research. These properties are usually measured using disposable instruments at sparse locations, typically from tens to hu... ver más