Resumen
The rapid growth of not just mobile devices but also Internet of Things (IoT) devices has introduced a new paradigm in mobile networks. This evolution and the continuous need to provide spectrum efficient, high data rates, low latency, and low energy consumption radio access networks have led to the emergence of fifth generation (5G) networks. Due to technical and economical limitations, the satellite air interface is expected to complement the 5G terrestrial air interface in the provision of 5G services including IoT communications. More importantly, it is on this premise that the 5G satellite air interface is expected to provide network access to IoT devices in rural and remote areas termed Internet of Remote Things (IoRT). While this remains an interesting solution, several radio resource management issues exist. One of them, spectrum management, in the 5G satellite as it affects IoRT communications, remains unclear. Hence, the aim of this paper is to investigate and recommend the spectrum management scheme that will be most suitable not only for Human-to-Human communications but also Machine-to-Machine communications in 5G satellite networks. In order to conduct this investigation, a new dynamic scheduling scheme that will be suitable for such a scenario is proposed in this paper. The investigation is conducted through simulations, using throughput, delay, spectral efficiency, and fairness index as the performance metrics.