Inicio  /  Future Internet  /  Vol: 15 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Neural Network Exploration for Keyword Spotting on Edge Devices

Jacob Bushur and Chao Chen    

Resumen

The introduction of artificial neural networks to speech recognition applications has sparked the rapid development and popularization of digital assistants. These digital assistants constantly monitor the audio captured by a microphone for a small set of keywords. Upon recognizing a keyword, a larger audio recording is saved and processed by a separate, more complex neural network. Deep neural networks have become an effective tool for keyword spotting. Their implementation in low-cost edge devices, however, is still challenging due to limited resources on board. This research demonstrates the process of implementing, modifying, and training neural network architectures for keyword spotting. The trained models are also subjected to post-training quantization to evaluate its effect on model performance. The models are evaluated using metrics relevant to deployment on resource-constrained systems, such as model size, memory consumption, and inference latency, in addition to the standard comparisons of accuracy and parameter count. The process of deploying the trained and quantized models is also explored through configuring the microcontroller or FPGA onboard the edge devices. By selecting multiple architectures, training a collection of models, and comparing the models using the techniques demonstrated in this research, a developer can find the best-performing neural network for keyword spotting given the constraints of a target embedded system.

 Artículos similares

       
 
Song Xue, Jingyan Chen, Sheng Li and Huaai Huang    
Early warning of safety risks downstream of small reservoirs is directly related to the safety of people?s lives and property and the economic and social development of the region. The lack of data and low collaboration in downstream safety management of... ver más
Revista: Water

 
Sepideh Molaei, Stefano Cirillo and Giandomenico Solimando    
MicroRNAs (miRNAs) play a crucial role in cancer development, but not all miRNAs are equally significant in cancer detection. Traditional methods face challenges in effectively identifying cancer-associated miRNAs due to data complexity and volume. This ... ver más

 
Alvaro A. Teran-Quezada, Victor Lopez-Cabrera, Jose Carlos Rangel and Javier E. Sanchez-Galan    
Convolutional neural networks (CNN) have provided great advances for the task of sign language recognition (SLR). However, recurrent neural networks (RNN) in the form of long?short-term memory (LSTM) have become a means for providing solutions to problem... ver más

 
Marcos Orellana, Patricio Santiago García, Guillermo Daniel Ramon, Jorge Luis Zambrano-Martinez, Andrés Patiño-León, María Verónica Serrano and Priscila Cedillo    
Health problems in older adults lead to situations where communication with peers, family and caregivers becomes challenging for seniors; therefore, it is necessary to use alternative methods to facilitate communication. In this context, Augmentative and... ver más

 
Binita Kusum Dhamala, Babu R. Dawadi, Pietro Manzoni and Baikuntha Kumar Acharya    
Graph representation is recognized as an efficient method for modeling networks, precisely illustrating intricate, dynamic interactions within various entities of networks by representing entities as nodes and their relationships as edges. Leveraging the... ver más
Revista: Future Internet