Resumen
Protected areas are the backbone of biodiversity conservation but are fixed in space and vulnerable to anthropogenic climate change. Myanmar is exceptionally rich in biodiversity but has a small protected area system. This study aimed to assess the potential vulnerability of this system to climate change. In the absence of good biodiversity data, we used a spatial modeling approach based on a statistically derived bioclimatic stratification (the Global Environmental Stratification, GEnS) to understand the spatial implications of projected climate change for Myanmar?s protected area system by 2050 and 2070. Nine bioclimatic zones and 41 strata were recognized in Myanmar, but their representation in the protected area system varied greatly, with the driest zones especially underrepresented. Under climate change, most zones will shift upslope, with some protected areas projected to change entirely to a new bioclimate. Potential impacts on biodiversity include mountaintop extinctions of species endemic to isolated peaks, loss of climate specialists from small protected areas and those with little elevational range, and woody encroachment into savannas and open forests as a result of both climate change and rising atmospheric CO2. Myanmar needs larger, better connected, and more representative protected areas, but political, social, and economic problems make this difficult.