Inicio  /  Applied Sciences  /  Vol: 11 Par: 12 (2021)  /  Artículo
ARTÍCULO
TITULO

Recurrent Neural Networks and ARIMA Models for Euro/Dollar Exchange Rate Forecasting

Pedro Escudero    
Willian Alcocer and Jenny Paredes    

Resumen

Analyzing the future behaviors of currency pairs represents a priority for governments, financial institutions, and investors, who use this type of analysis to understand the economic situation of a country and determine when to sell and buy goods or services from a particular location. Several models are used to forecast this type of time series with reasonable accuracy. However, due to the random behavior of these time series, achieving good forecasting performance represents a significant challenge. In this paper, we compare forecasting models to evaluate their accuracy in the short term using data on the EUR/USD exchange rate. For this purpose, we used three methods: Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network (RNN) of the Elman type, and Long Short-Term Memory (LSTM). The analyzed period spanned from 2 January 1998, to 31 December 2019, and was divided into training and validation datasets. We performed forecasting calculations to predict windows with six different forecasting horizons. We found that the window of one month with 22 observations better matched the validation dataset in the short term compared to the other windows. Theil?s U coefficients calculated for this window were 0.04743, 0.002625, and 0.001808 for the ARIMA, Elman, and LSTM networks, respectively. LSTM provided the best forecast in the short term, while Elman provided the best forecast in the long term.

 Artículos similares

       
 
Hermilo Santiago-Benito , Diana-Margarita Córdova-Esparza , Noé-Alejandro Castro-Sánchez , Teresa García-Ramirez , Julio-Alejandro Romero-González and Juan Terven    
This paper introduces a novel method for collecting and translating texts from the Mixtec to the Spanish language. The method comprises four primary steps. First, we collected a Mixtec?Spanish corpus that includes 4568 sentences from educational and reli... ver más
Revista: Applied Sciences

 
Junlin Lou, Burak Yuksek, Gokhan Inalhan and Antonios Tsourdos    
In this study, we consider the problem of motion planning for urban air mobility applications to generate a minimal snap trajectory and trajectory that cost minimal time to reach a goal location in the presence of dynamic geo-fences and uncertainties in ... ver más
Revista: Aerospace

 
Sorin Zoican, Roxana Zoican, Dan Galatchi and Marius Vochin    
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturi... ver más
Revista: Applied Sciences

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Gerasim V. Krivovichev and Valentina Yu. Sergeeva    
The paper is devoted to the theoretical and numerical analysis of the two-step method, constructed as a modification of Polyak?s heavy ball method with the inclusion of an additional momentum parameter. For the quadratic case, the convergence conditions ... ver más
Revista: Algorithms