Resumen
An acoustoelectric approach to neuron function is proposed that combines aspects of the widely accepted electrical-circuit-based Hodgkin?Huxley model for the generation and propagation of action potentials via electric polarization with mechanical models based on propagation via capillary waves. Explaining measured velocities of action potentials quantitatively, it also predicts the electrical tunability of highly anisotropic polarization packages that surf on the dynamic mechanical force field deforming the neuron membrane. It relies substantially on the local motion of dipoles formed by excess charges close to the inside surface of the neuron membrane, which in turn are anisotropically screened by water molecules in their hydration shell, thus modulating the strong electric field at the interface. As demonstrated on acoustic resonators of suspended nanowires fabricated out of amorphous dipolar silicon nitride, high electric fields combined with predominantly axial-strain modulation can cause transverse acoustoelectric polarization waves that propagate soliton-like with extremely low loss. In neurons, the modulation of electric polarization is confined in the nanometer-thin skin of a high electric field inside the neuron membrane and propagates phase-coherent along the axon as a lowest-order one-dimensional breathing mode, similar to transverse polarization pulses studied in nanowire resonators. Some experiments for the further manifestation of the model as well as topological protection of such breathing-mode polarization waves are discussed.