Inicio  /  Applied Sciences  /  Vol: 12 Par: 20 (2022)  /  Artículo
ARTÍCULO
TITULO

Case Study in Modular Lightweight Steel Frame Construction: Thermal Bridges and Energy Performance Assessment

Bojan Milovanovic    
Marina Bagaric    
Mergim Ga?i and Nikolina Vezilic Strmo    

Resumen

This paper proposes an improvement of the conventional Lightweight Steel Frame (LSF) wall structure suitable for the design of high-performance modular buildings. A mobile module, named MUZA, is used as a case study building to analyse the performance of such LSF structures in terms of their thermal bridging effect on the U-value of the opaque envelope elements, linear heat losses at junctions, and moisture condensation risk, as well as thermal bridging effect on the overall energy performance of the building. The study included an additional climate- and orientation-dependent analysis that examined the performance of MUZA under various conditions. The main conclusion is that the steel studs increase the U-value from 28.4% to 41.6% compared to cases without the studs, which consequently increases transmission losses through opaque elements. Thanks to the continuous covering of the metal studs with thermal insulation, the thermal bridges at the element junctions are minimized, and in almost all cases, the ?-values are well below 0.1 W/(m·K) and are free from moisture condensation. The overall impact of thermal bridges on heating energy demand is significant, while the impact on cooling energy is less pronounced. The designed module with the proposed LSF wall structure can meet the Croatian requirements for Nearly Zero-Energy Buildings (NZEB), but the shading devices and photovoltaics orientation must be optimized depending on the climatic conditions and the orientation of the large transparent openings. MUZA can be a promising solution for post-disaster housing, providing better indoor environmental quality, healthy living conditions, and low energy bills for the affected people. In addition, it can also be used for permanent housing when a fast and robust modular construction is required which is also energy efficient and sustainable.

 Artículos similares

       
 
Tímea Kiss, Gabriel J. Amissah and Károly Fiala    
Stone and concrete revetments are widely constructed to control bank erosion and thus stabilize river banks. The consequences include accelerated erosion at unrevetted downstream channel sections and in-channel incision at revetted sections. The studied ... ver más
Revista: Water

 
Tienan Li, Xueting Zeng, Cong Chen, Xiangmin Kong, Junlong Zhang, Ying Zhu, Fan Zhang and He Dong    
In this study, an initial water-rights allocation (IWRA) model is proposed for adjusting the traditional initial water-rights empowerment model based on previous water intake permits, with the aim of improving the productivity of water resources under po... ver más
Revista: Water

 
Francesco Fusco, Pantaleone De Vita, Benjamin B. Mirus, Rex L. Baum, Vincenzo Allocca, Rita Tufano, Enrico Di Clemente and Domenico Calcaterra    
On the 4th and 5th of March 2005, about 100 rainfall-induced landslides occurred along volcanic slopes of Camaldoli Hill in Naples, Italy. These started as soil slips in the upper substratum of incoherent and welded volcaniclastic deposits, then evolved ... ver más
Revista: Water

 
Reza Aghlmand and Ali Abbasi    
Increasing water demands, especially in arid and semi-arid regions, continuously exacerbate groundwater resources as the only reliable water resources in these regions. Groundwater numerical modeling can be considered as an effective tool for sustainable... ver más
Revista: Water

 
Xudong Ma, Lu Wang, Ruihua Nie, Kejun Yang and Xingnian Liu    
This paper conducted an undistorted scaled model test (geometric scale ?L = 1:80; the others are derived scales based on Froude similitude) of a 1.3 km-long river reach in Shiting River, China, investigating the impacts of the grade control datum (GCD, d... ver más
Revista: Water