Resumen
To address the problems of threshing loss and high impurity rate during sunflower oil harvesting, a vertical axial flow sunflower oil threshing device was designed. To reduce severe breakage of the sunflower plate and high entrainment loss rate when threshing by the traditional grating gravure sieve, a circular tube-type gravure screen was designed, and a contact model describing the grain rod, sunflower pan, and gravure screen was analyzed. The results show that reducing the diameter of the gravure screen round tubes can effectively reduce breakage of the sunflower pan. The range of the threshing gap, drum speed, and feed amount were determined by a single-factor test. Design-Expert software was used to design a response surface experiment: threshing gap, drum rotation speed, and feed amount were used as test factors, and the threshing loss rate of grains and the grain mass ratio of undersize grains were used as evaluation indicators. A regression model between test factors and evaluation indexes was established by variance analysis of the test results. A software-based numerical optimization function was used to reduce the loss rate of grains and increase the grain mass ratio of undersize grains. The optimal parameters of the threshing device were obtained by multi-objective optimization of all factors: the separation gap was 24.90 mm, drum speed was 244.14 r/min, feed amount was 2.95 kg/s, the threshing loss rate grains was 2.35%, and the grain mass ratio of undersized grains was 81.34%. This study can provide a reference for the design of a combined sunflower oil harvester threshing device.