Resumen
Graphene material has a variety of excellent properties and applications in energy storage, biomaterials, photoelectric devices, and other fields. With the progress of nanotechnology, graphene nanomaterials have shown their advantages in the field of new nano-corrosion coatings with their high barrier structure. In addition, polyurethane is also widely used in the field of anti-corrosion coatings due to its excellent chemical resistance, mechanical properties, and weathering resistance. The preparation of composite coatings by combining graphene nanomaterials with traditional polyurethane (PU) coatings has opened up a new way for the research and development of new anticorrotic coatings. In this paper, graphene polyurethane composite coating was first used as the research object, and the mechanism of graphene material in the new composite coating was analyzed. Then, graphene oxide (GO), a commonly used precursor material, was used as an entry point for a detailed study of the properties of GO materials and the advantages and disadvantages of its application in composites, and two types of modifications, covalent and non-covalent, were analyzed. In addition, the preparation methods and processes of graphene polyurethane composite coatings were summarized. Finally, the future research directions and research focus of GO were prospected.