Inicio  /  Water  /  Vol: 10 Par: 7 (2018)  /  Artículo
ARTÍCULO
TITULO

Time Variability Patterns of Eutrophication Indicators in the Bay of Algeciras (South Spain)

Jesús M. Mercado    
Pablo León    
Soluna Salles    
Dolores Cortés    
Lidia Yebra    
Francisco Gómez-Jakobsen    
Inma Herrera    
Aitor Alonso    
Antonio Sánchez    
Nerea Valcárcel-Pérez and Sébastien Putzeys    

Resumen

In the Bay of Algeciras (BA), intensive urban and industrial activityis underway, which is potentially responsible for the release of significant quantities of nutrients. However, the assessment of the impact of these discharges is complex. Nutrient concentration in the surface layer is per se strongly variable due to the variability associated with the upwelling of nutrient-enriched deep Mediterranean water (MW), which in turn is regulated by atmospheric forcing. The aim of this study is to determine the effects of changes in the upwelling intensity on the load of nitrate and phosphate in the BA and to appraise their impact on chlorophyll a variability. Based on this analysis, the possible influence of the nutrients released from land-based sources is indirectly inferred. Data and samples collected during nine research cruises carried out in different seasonal cycle periods between 2010 and 2015 in the BA were analysed. The vertical variation of temperature and salinity indicates that the MW upwelling was favoured in spring, as occurred in other coastal areas of the northern Alboran Sea. However, principal component analysis conducted on physical and chemical data reveals that shifts in nutrients and chlorophyll a in the euphotic layer are poorly explained by changes in the upwelling intensity. Furthermore, during some of these research surveys (particularly in summer), chlorophyll a concentrations were higher in the BA as compared to a nearby coastal area also affected by MW upwelling. Scarce information about land-based pollution sources precludes quantitative analysis of the impact of nutrient loads on water quality; however, the available data suggest that the main source of allochthanous inorganic nitrogen over the period 2010?2015 in the BA was nitrate. Therefore, it is reasonable to hypothesize that the high concentrations of nitrate and chlorophyll a in BA in summer are a consequence of those discharges. Our study highlights the need of more exhaustive inventories of sewage and river discharges to adequately rate their impact in the BA.

 Artículos similares

       
 
Chen Xia, Christian Eduardo Verdonk Gallego, Adrián Fabio Bracero, Víctor Fernando Gómez Comendador and Rosa María Arnaldo Valdés    
This paper investigates the impact of trajectory predictor performance on the encounter probability generated by an adaptive conflict detection tool and examines the flexibility of the tool dependent on its adjustable thresholds, using historical radar t... ver más
Revista: Aerospace

 
Wenhao Sun, Yidong Zou, Yunhe Wang, Boyi Xiao, Haichuan Zhang and Zhihuai Xiao    
In the practical production environment, the complexity and variability of hydroelectric units often result in a need for more fault data, leading to inadequate accuracy in fault identification for data-driven intelligent diagnostic models. To address th... ver más
Revista: Water

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Martin Krajcovic, Gabriela Gabajová, Martin Ga?o and Marek Schickerle    
The Demand-Driven Material Resource Planning (DDMRP) method is one of the newer methods of inventory management in an enterprise. Its creation was initiated by a change in the business environment and the characteristics of today?s supply chains. DDMRP b... ver más
Revista: Applied Sciences

 
Dimitris Papadopoulos and Vangelis D. Karalis    
Sample size is a key factor in bioequivalence and clinical trials. An appropriately large sample is necessary to gain valuable insights into a designated population. However, large sample sizes lead to increased human exposure, costs, and a longer time f... ver más
Revista: Applied Sciences