ARTÍCULO
TITULO

A Method for Reducing Cogging Torque of Integrated Propulsion Motor

Huanyu Ou    
Yuli Hu    
Zhaoyong Mao and Yukai Li    

Resumen

How to reduce the cogging torque of the integrated propeller motor is an important means to improve its noise performance because cogging torque is one of the key factors causing torque ripple. We proposed a method to reduce the cogging torque by optimizing the size of the Halbach array?s auxiliary pole. First, an analytical model for the airgap magnetic field of Halbach array based on different dimensions (including the circumference ratio and the radial thickness) of the auxiliary pole is given. Then the finite element method is used to verify the analytical model. On the basis, we calculated the cogging torque of different size of auxiliary poles as sample data by combining different circumference ratio and radial thickness. Furthermore, using the two-variable single-objective neural network genetic optimization algorithm based on Backpropagation (BP), we obtain the optimal size of the auxiliary pole. Finally, comparing the motor cogging torque and torque ripple before and after optimization indicated that the cogging torque and torque ripple are effectively reduced after optimizing the size of the auxiliary pole.

 Artículos similares

       
 
Nadia Brancati and Maria Frucci    
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ... ver más
Revista: Information

 
Jingxin Guan, Jun Huang, Lei Song and Xiaoqiang Lu    
To find a trajectory with low radar detection probability for stealth aircraft under the assumption of 2D space, performing a rapid turning maneuver is a useful way to reduce the radar detection probability of an aircraft by changing the azimuth angle ra... ver más
Revista: Aerospace

 
Huawei Sun, Anran Ju, Wentian Chang, Jingfei Liu, Jiayi Liu and Hanbing Sun    
Assessing the safety of amphibious aircraft hinges significantly on two key factors: wave-added resistance and motion stability during takeoff and landing on water surfaces. To tackle this, we employed the Reynolds-averaged Navier?Stokes (RANS) equations... ver más

 
Chengyang Peng, Shaohua Jin, Gang Bian, Yang Cui and Meina Wang    
The scarcity and difficulty in acquiring Side-scan sonar target images limit the application of deep learning algorithms in Side-scan sonar target detection. At present, there are few amplification methods for Side-scan sonar images, and the amplificatio... ver más

 
Haohao Guo, Tianxiang Xiang, Yancheng Liu, Qiaofen Zhang, Yi Wei and Fengkui Zhang    
This paper proposes a new method for compensating current measurement errors in shipboard permanent magnet propulsion motors. The method utilizes cascade decoupling second-order generalized integrators (SOGIs) and adaptive linear neurons (ADALINEs) as th... ver más