Resumen
Floods are the most common and costliest natural disaster in Australia. Australian flood risk assessments (FRAs) are mostly conducted on relatively small scales using modelling outputs. The aim of this study was to develop a novel approach of index-based analysis using a multi-criteria decision-making (MCDM) method for FRA on a large spatial domain. The selected case study area was the Hawkesbury-Nepean Catchment (HNC) in New South Wales, which is historically one of the most flood-prone regions of Australia. The HNC?s high flood risk was made distinctly clear during recent significant flood events in 2021 and 2022. Using a MCDM method, an overall Flood Risk Index (FRI) for the HNC was calculated based on flood hazard, flood exposure, and flood vulnerability indices. Inputs for the indices were selected to ensure that they are scalable and replicable, allowing them to be applied elsewhere for future flood management plans. The results of this study demonstrate that the HNC displays high flood risk, especially on its urbanised floodplain. For the examined March 2021 flood event, the HNC was found to have over 73% (or over 15,900 km2) of its area at ?Severe? or ?Extreme? flood risk. Validating the developed FRI for correspondence to actual flooding observations during the March 2021 flood event using the Receiver Operating Characteristic (ROC) statistical test, a value of 0.803 was obtained (i.e., very good). The developed proof-of-concept methodology for flood risk assessment on a large spatial scale has the potential to be used as a framework for further index-based FRA approaches.