ARTÍCULO
TITULO

Point Cloud Data Processing Optimization in Spectral and Spatial Dimensions Based on Multispectral Lidar for Urban Single-Wood Extraction

Shuo Shi    
Xingtao Tang    
Bowen Chen    
Biwu Chen    
Qian Xu    
Sifu Bi and Wei Gong    

Resumen

Lidar can effectively obtain three-dimensional information on ground objects. In recent years, lidar has developed rapidly from single-wavelength to multispectral hyperspectral imaging. The multispectral airborne lidar Optech Titan is the first commercial system that can collect point cloud data on 1550, 1064, and 532 nm channels. This study proposes a method of point cloud segmentation in the preprocessed intensity interpolation process to solve the problem of inaccurate intensity at the boundary during point cloud interpolation. The entire experiment consists of three steps. First, a multispectral lidar point cloud is obtained using point cloud segmentation and intensity interpolation; the spatial dimension advantage of the multispectral point cloud is used to improve the accuracy of spectral information interpolation. Second, point clouds are divided into eight categories by constructing geometric information, spectral reflectance information, and spectral characteristics. Accuracy evaluation and contribution analysis are also conducted through point cloud truth value and classification results. Lastly, the spatial dimension information is enhanced by point cloud drop sampling, the method is used to solve the error caused by airborne scanning and single-tree extraction of urban trees. Classification results showed that point cloud segmentation before intensity interpolation can effectively improve the interpolation and classification accuracies. The total classification accuracy of the data is improved by 3.7%. Compared with the extraction result (377) of single wood without subsampling treatment, the result of the urban tree extraction proved the effectiveness of the proposed method with a subsampling algorithm in improving the accuracy. Accordingly, the problem of over-segmentation is solved, and the final single-wood extraction result (329) is markedly consistent with the real situation of the region.

 Artículos similares

       
 
Abderrazzaq Kharroubi, Zouhair Ballouch, Rafika Hajji, Anass Yarroudh and Roland Billen    
Railway scene understanding is crucial for various applications, including autonomous trains, digital twining, and infrastructure change monitoring. However, the development of the latter is constrained by the lack of annotated datasets and limitations o... ver más
Revista: Infrastructures

 
Yee Sye Lee, Ali Rashidi, Amin Talei and Daniel Kong    
In recent years, mixed reality (MR) technology has gained popularity in construction management due to its real-time visualisation capability to facilitate on-site decision-making tasks. The semantic segmentation of building components provides an attrac... ver más
Revista: Buildings

 
Mikael Sabuhi, Petr Musilek and Cor-Paul Bezemer    
As the number of machine learning applications increases, growing concerns about data privacy expose the limitations of traditional cloud-based machine learning methods that rely on centralized data collection and processing. Federated learning emerges a... ver más
Revista: Future Internet

 
Mizuki Asano, Takumi Miyoshi and Taku Yamazaki    
Smart home environments, which consist of various Internet of Things (IoT) devices to support and improve our daily lives, are expected to be widely adopted in the near future. Owing to a lack of awareness regarding the risks associated with IoT devices ... ver más
Revista: Future Internet

 
Zicheng Zhu, Steve Rowlinson, Tianzhuo Chen and Alan Patching    
Point cloud models are prevalently utilized in the architectural and civil engineering sectors. The registration of point clouds can invariably introduce registration errors, adversely impacting the accuracy of point cloud models. While the domain of com... ver más
Revista: Buildings