Inicio  /  Applied Sciences  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Attention-Based RU-BiLSTM Sentiment Analysis Model for Roman Urdu

Bilal Ahmed Chandio    
Ali Shariq Imran    
Maheen Bakhtyar    
Sher Muhammad Daudpota and Junaid Baber    

Resumen

Deep neural networks have emerged as a leading approach towards handling many natural language processing (NLP) tasks. Deep networks initially conquered the problems of computer vision. However, dealing with sequential data such as text and sound was a nightmare for such networks as traditional deep networks are not reliable in preserving contextual information. This may not harm the results in the case of image processing where we do not care about the sequence, but when we consider the data collected from text for processing, such networks may trigger disastrous results. Moreover, establishing sentence semantics in a colloquial text such as Roman Urdu is a challenge. Additionally, the sparsity and high dimensionality of data in such informal text have encountered a significant challenge for building sentence semantics. To overcome this problem, we propose a deep recurrent architecture RU-BiLSTM based on bidirectional LSTM (BiLSTM) coupled with word embedding and an attention mechanism for sentiment analysis of Roman Urdu. Our proposed model uses the bidirectional LSTM to preserve the context in both directions and the attention mechanism to concentrate on more important features. Eventually, the last dense softmax output layer is used to acquire the binary and ternary classification results. We empirically evaluated our model on two available datasets of Roman Urdu, i.e., RUECD and RUSA-19. Our proposed model outperformed the baseline models on many grounds, and a significant improvement of 6% to 8% is achieved over baseline models.

 Artículos similares

       
 
Kasun Moolikagedara, Minh Nguyen, Weiqi Yan and Xuejun Li    
In the digital age, where the Internet of Things (IoT) permeates every facet of our lives, the safeguarding of data privacy, especially video data, emerges as a paramount concern. The ubiquity of IoT devices, capable of capturing and disseminating vast q... ver más
Revista: Information

 
Yanjun Li, Takaaki Yoshimura, Yuto Horima and Hiroyuki Sugimori    
The detection of coronary artery stenosis is one of the most important indicators for the diagnosis of coronary artery disease. However, stenosis in branch vessels is often difficult to detect using computer-aided systems and even radiologists because of... ver más
Revista: Algorithms

 
Mustafa Erkan Turan and Tulin Cetin    
Sewer systems are a component of city infrastructure that requires large investment in construction and operation. Metaheuristic optimization methods have been used to solve sewer optimization problems. The aim of this study is to investigate the effects... ver más
Revista: Water

 
Alice Zaghini, Francesca Gagliardi, Valentina Marsili, Filippo Mazzoni, Lorenzo Tirello, Stefano Alvisi and Marco Franchini    
Providing water with adequate quality to users is one of the main concerns for water utilities. In most countries, this is ensured through the introduction of disinfectants, such as chlorine, which are subjected to decay over time, with consequent loss o... ver más
Revista: Water

 
Padmanabhan Balasubramanian and Nikos E. Mastorakis    
Multiplication is a fundamental arithmetic operation in electronic processing units such as microprocessors and digital signal processors as it plays an important role in various computational tasks and applications. There exist many designs of synchrono... ver más