ARTÍCULO
TITULO

Application of Deep Learning-Based Object Detection Techniques in Fish Aquaculture: A Review

Hanchi Liu    
Xin Ma    
Yining Yu    
Liang Wang and Lin Hao    

Resumen

Automated monitoring and analysis of fish?s growth status and behaviors can help scientific aquaculture management and reduce severe losses due to diseases or overfeeding. With developments in machine vision and deep learning (DL) techniques, DL-based object detection techniques have been extensively applied in aquaculture with the advantage of simultaneously classifying and localizing fish of interest in images. This study reviews the relevant research status of DL-based object detection techniques in fish counting, body length measurement, and individual behavior analysis in aquaculture. The research status is summarized from two aspects: image and video analysis. Moreover, the relevant technical details of DL-based object detection techniques applied to aquaculture are also summarized, including the dataset, image preprocessing methods, typical DL-based object detection algorithms, and evaluation metrics. Finally, the challenges and potential trends of DL-based object detection techniques in aquaculture are concluded and discussed. The review shows that generic DL-based object detection architectures have played important roles in aquaculture.

 Artículos similares

       
 
Benedikt Bergmann, Stefan Gohl, Declan Garvey, Jindrich Jelínek and Petr Smolyanskiy    
In space application, hybrid pixel detectors of the Timepix family have been considered mainly for the measurement of radiation levels and dosimetry in low earth orbits. Using the example of the Space Application of Timepix Radiation Monitor (SATRAM), we... ver más
Revista: Instruments

 
Beichen Lu, Yanjun Liu, Xiaoyu Zhai, Li Zhang and Yun Chen    
In recent years, clean and renewable energy sources have received much attention to balance the contradiction between resource needs and environmental sustainability. Among them, ocean thermal energy conversion (OTEC), which consists of surface warm seaw... ver más

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Ji-Woon Lee and Hyun-Soo Kang    
The escalating use of security cameras has resulted in a surge in images requiring analysis, a task hindered by the inefficiency and error-prone nature of manual monitoring. In response, this study delves into the domain of anomaly detection in CCTV secu... ver más
Revista: Applied Sciences

 
Julia Mayer, Martin Memmel, Johannes Ruf, Dhruv Patel, Lena Hoff and Sascha Henninger    
Urban tree cadastres, crucial for climate adaptation and urban planning, face challenges in maintaining accuracy and completeness. A transdisciplinary approach in Kaiserslautern, Germany, complements existing incomplete tree data with additional precise ... ver más
Revista: Applied Sciences