ARTÍCULO
TITULO

Modeling the Impact of the Implementation of a Submerged Structure on Surf Zone Sandbar Dynamics

Clément Bouvier    
Bruno Castelle and Yann Balouin    

Resumen

Coastal defense strategies based on structures are increasingly unpopular as they are costly, leave lasting scars on the landscape, and sometimes have limited effectiveness or even adverse impacts. While a clear improvement concerning aesthetic considerations using soft submerged breakwater is undeniable, their design has often focused on wave transmission processes across the crest of the structure, overlooking short- to medium-term morphodynamic responses. In this study, we used a time- and depth-averaged morphodynamic model to investigate the impact of the implementation of a submerged breakwater on surf zone sandbar dynamics at the beach of Sète, SE France. The hydrodynamic module was calibrated with data collected during a field experiment using three current profilers deployed to capture rip-cell circulation at the edge of the structure. The model showed good agreement with measurements, particularly for the longshore component of the flow (RMSE = 0.07 m/s). Results showed that alongshore differential wave breaking at the edge of the submerged breakwater drove an intense (0.4 m/s) two-dimensional circulation for low- to moderate-energy waves. Simulations indicated that inner-bar rip channel development, which was observed prior to the submerged reef implementation, was inhibited in the lee of the structure as rip-cell circulation across the inner bar disappeared owing to persistently low-energy breaking waves. The cross-shore sandbar dynamics in the lee of the structure were also impacted due to the drastic decrease of the offshore-directed flow over the inner-bar during energetic events. This paper highlights that implementation of a submerged breakwater results in larges changes in nearshore hydrodynamics that, in turn, can affect overall surf zone sandbar behavior.

 Artículos similares

       
 
Jiangtao Chen, Jiao Zhao, Wei Xiao, Luogeng Lv, Wei Zhao and Xiaojun Wu    
Given the randomness inherent in fluid dynamics problems and limitations in human cognition, Computational Fluid Dynamics (CFD) modeling and simulation are afflicted with non-negligible uncertainties, casting doubts on the credibility of CFD. Scientifica... ver más
Revista: Aerospace

 
Kristina Mazur, Mischa Saleh and Mirko Hornung    
Early and rapid environmental assessment of newly developed aircraft concepts is eminent in today?s climate debate. This can shorten the decision-making process and thus accelerate the entry into service of climate-friendly technologies. A holistic appro... ver más
Revista: Aerospace

 
Yan Zhang, Bingfei Chu, Tianming Huang, Shengwen Qi, Michael Manga, Huai Zhang, Bowen Zheng and Yuxin Zhou    
Carbon geological storage (CGS) is an important global practice implemented to mitigate the effects of CO2 emissions on temperature, climate, sea level, and biodiversity. The monitoring of CGS leakage and the impact of storage on hydrogeological properti... ver más
Revista: Water

 
Bomi Kim, Garim Lee, Yaewon Lee, Sohyun Kim and Seong Jin Noh    
In this study, we analyzed the impact of model spatial resolution on streamflow predictions, focusing on high-resolution scenarios (<1 km) and flooding conditions at catchment scale. Simulation experiments were implemented for the Geumho River catchment ... ver más
Revista: Water

 
Tânia Soares, Carlos Fernandes, Cláudia Barbosa, Mário A. P. Vaz, Tiago Reis and Maria Helena Figueiral    
Polyetheretherketone is a high-performance thermoplastic polymer that can be used in 3D printing by fused deposition modeling, and is a promising material for dental applications. Some printing parameters are sensitive and can influence the properties of... ver más
Revista: Applied Sciences