Inicio  /  Applied Sciences  /  Vol: 12 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

A New Spatial Distance Metric for Verification of Precipitation

Gregor Skok    

Resumen

Precipitation is an essential meteorological variable affecting the biosphere and human societies. At the same time, precipitation is notoriously difficult to predict and verify. A new spatial distance metric for verification of precipitation is presented. It is called the Precipitation Smoothing Distance (PSD). The aim was to develop a measure that would provide a good and meaningful approximation of the displacement of precipitation events in the two fields. An estimate of spatial displacement is very appealing for forecast interpretation because it is easy to understand and mimics how humans tend to judge fields by eye. Contrary to most other distance metrics, the new metric does not require thresholding and can thus be used to analyze binary and non-binary fields (e.g., continuous or multi-level). The analysis of idealized situations showed that the new metric provides a meaningful approximation of the displacement. Typically the estimate of displacement provided by PSD was better than the results provided by most other metrics. The measure is also not overly sensitive to noise, its results are directly related to the actual displacements of precipitation events, and the events with a larger magnitude have a bigger influence on the resulting value. The analysis of ECMWF precipitation forecasts over Europe and North Africa confirmed that the new metric provides a meaningful approximation of the displacement even in more complex real-world situations.

 Artículos similares

       
 
Mubeen Fatima, Ravi P. Agarwal, Muhammad Abbas, Pshtiwan Othman Mohammed, Madiha Shafiq and Nejmeddine Chorfi    
A B-spline is defined by the degree and quantity of knots, and it is observed to provide a higher level of flexibility in curve and surface layout. The extended cubic B-spline (ExCBS) functions with new approximation for second derivative and finite diff... ver más
Revista: Computation

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
Joana Carneiro, Dália Loureiro, Marta Cabral and Dídia Covas    
This paper presents and demonstrates a novel scenario-building methodology that integrates contextual and future time uncertainty into the performance assessment of water distribution networks (WDNs). A three-step approach is proposed: (i) System context... ver más
Revista: Water

 
Peijie Yang, Jie Xue and Hao Hu    
With the significant role that Unmanned Surface Vessels (USVs) could play in industry, the military and the transformation of ocean engineering, a growing research interest in USVs is attracted to their innovation, new technology and automation. Yet, the... ver más

 
Yang Lu, Xiaochun Wang, Yijun He, Jiping Liu, Jiangbo Jin, Jian Cao, Juanxiong He, Yongqiang Yu, Xin Gao, Mirong Song and Yiming Zhang    
Two coupled climate models that participated in the CMIP6 project (Coupled Model Intercomparison Project Phase 6), the Earth System Model of Chinese Academy of Sciences version 2 (CAS-ESM2-0), and the Nanjing University of Information Science and Technol... ver más