Inicio  /  Water  /  Vol: 16 Par: 5 (2024)  /  Artículo
ARTÍCULO
TITULO

Development of Daily Flow Expansion Regression and Web GIS-Based Pollutant Load Evaluation System

Donghyuk Kum    
Jichul Ryu    
Yongchul Shin    
Jihong Jeon    
Jeongho Han    
Kyoung Jae Lim and Jonggun Kim    

Resumen

This study accounted for the importance of daily expansion flow data in compensating for insufficient flow data in a watershed. In particular, the 8-day interval flow measurement data (intermittent monitoring data) could cause uncertainty in the high- or low-flow conditions that have been used to estimate the flow duration curve (FDC) and the load duration curve (LDC) used in Total Maximum Daily Load (TMDL) evaluation in Korea. Thus, this study developed a method to expand the 8-day interval flow data (missing data) to daily flow data in order to evaluate the Total Maximum Daily Load (TMDL) appropriately in a watershed. We employed the machine learning technique (the gradient descent method provided by the Google TensorFlow package) to develop a regression for expanding the 8-day interval flow data. The method was applied in the Nakdong River basin located in Korea to collect the 8-day interval and daily flow data from a number of gauging stations. The results of the expanded daily flow were evaluated through the RMSE, MAE, IOA, and NSE, and the valid expanded daily flow data were obtained for the 29 TMDL gauging stations (IOA 0.84~0.99, NSE -0.18~0.99). A good performance in the creation of daily flow data (continuous data) from the 8-day interval flow data (intermittent data) was shown using the proposed method. In addition, the Web GIS-based pollutant load assessment system was developed to evaluate the TMDL; it included the daily data expansion method and provided the pollution load characteristics objectively and intuitively. This system will help decision makers, such as environmental regulators, researchers, and the general public, and support their decision making for pollution source management with accessible and efficient tools for understanding and addressing water quality issues.

 Artículos similares

       
 
Louis Closson, Christophe Cérin, Didier Donsez and Jean-Luc Baudouin    
This paper aims to provide discernment toward establishing a general framework, dedicated to data analysis and forecasting in smart buildings. It constitutes an industrial return of experience from an industrialist specializing in IoT supported by the ac... ver más
Revista: Information

 
Josue-Rafael Montes-Martínez, Hugo Jiménez-Hernández, Ana-Marcela Herrera-Navarro, Luis-Antonio Díaz-Jiménez, Jorge-Luis Perez-Ramos and Julio-César Solano-Vargas    
Artificial vision system applications have generated significant interest as they allow information to be obtained through one or several of the cameras that can be found in daily life in many places, such as parks, avenues, squares, houses, etc. When th... ver más

 
Ali Eghmazi, Mohammadhossein Ataei, René Jr Landry and Guy Chevrette    
The Internet of Things (IoT) is a technology that can connect billions of devices or ?things? to other devices (machine to machine) or even to people via an existing infrastructure. IoT applications in real-world scenarios include smart cities, smart hou... ver más
Revista: IoT

 
Rita Nicolau and Beatriz Condessa    
This study seeks to contribute to the definition of a ?no net land take? policy by 2050 for Portugal?s second-largest metropolitan region (AMP, Porto Metropolitan Area) while sensitising those involved in regional and local planning to the European targe... ver más
Revista: Urban Science

 
Jerry W. Knox and Keith Weatherhead    
Rising demands and competition for water resources within all sectors are placing increasing pressure on the environment. Almost all direct abstractions in England require a licence (permit) from the regulatory authority, the Environment Agency. Assessin... ver más
Revista: Hydrology