Resumen
Motor control characteristics of the human visuomotor control system need to be analyzed in the three-dimensional (3D) space to study and imitate human movements. In this paper, we examined circular tracking movements on two planes in 3D space from a motor control perspective based on three temporospatial parameters in polar coordinates. Sixteen healthy human subjects participated in this study and performed circular target tracking movements rotating at 0.125, 0.25, 0.5, and 0.75 Hz in the frontal or sagittal planes in three-dimensional space. The results showed that two temporal parameter errors on each plane were proportional to the change in the target velocity. Furthermore, frontal plane circular tracking errors without depth for a spatial parameter were lower than those for sagittal plane circular tracking with depth. The experimental protocol and data analysis allowed us to analyze the motor control characteristics temporospatially for circular tracking movement with various depths and speeds in the 3D VR space.