Inicio  /  Applied Sciences  /  Vol: 9 Par: 22 (2019)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation of a New Flow Field Design with Rib Grooves for a Proton Exchange Membrane Fuel Cell with a Serpentine Flow Field

Xin Luo    
Shizhong Chen    
Zhongxian Xia    
Xuyang Zhang    
Wei Yuan and Yuhou Wu    

Resumen

The cathode flow field design of a proton exchange membrane (PEM) fuel cell is essential to fuel cell performance, which directly affects the uniformity of reactant distribution and the ability to remove water. In this paper, the single serpentine flow field design on the cathode side is optimized to reach a high performance by controlling the rib groove rate (the ratio of the number of grooved ribs to the number of total ribs). The rib groove starts from the inlet side and then evenly distributes over the ribs. Four rib groove rates are selected in this study, namely, 0, 1/3, 2/3, and 1. A three-dimensional PEM fuel cell model is used to analyze the output performance of the fuel cell. The results indicate that the rib groove design has a significant effect on the distribution of oxygen at the cathode side, the density of the membrane current, the concentration of water vapor under the rib, and the fuel cell output performance. The output performance of the fuel cell improves with the increased rib groove rate. However, when the rib groove rate is greater than 2/3, its impact on the overall performance of the fuel cell begins to slow down. The PEM fuel cells exhibit the best output performance when the rib groove rate is 1.

 Artículos similares

       
 
Guangyu Jiang and Zhongjing Wang    
Water cycles exist in all processes of water resources utilization, including water-saving irrigation. Due to the complex water cycle process of irrigation, the ecological effects and safety of large-scale water-saving irrigation have received increasing... ver más
Revista: Water

 
Sara Remelli, Emma Petrella, Alessandro Chelli, Federica Delia Conti, Carlos Lozano Fondón, Fulvio Celico, Roberto Francese and Cristina Menta    
Landslides are common in the Northern Apennines (Italy) and their resulting changes in soil structure affect edaphic fauna biodiversity, whose activity has concurrent impacts on soil structural stability and water-holding capacity. The aim of this study ... ver más
Revista: Water

 
Rebecca A. Purvis, Ryan J. Winston, William F. Hunt, Brian Lipscomb, Karthik Narayanaswamy, Andrew McDaniel, Matthew S. Lauffer and Susan Libes    
Bioswales are a promising stormwater control measure (SCM) for roadway runoff management, but few studies have assessed performance on a field scale. A bioswale is a vegetated channel with underlying engineered media and a perforated underdrain to promot... ver más
Revista: Water

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Qizong Sun, Ertian Hua, Liying Sun, Linfeng Qiu, Yabo Song and Mingwang Xiang    
The flapping hydrofoil bionic pump is an innovative hydrodynamic device that utilizes flapping hydrofoil technology. Flapping hydrofoil bionic pumps are crucial in addressing issues like inadequate river hydropower and limited water purification capabili... ver más
Revista: Water