Inicio  /  Hydrology  /  Vol: 10 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

A Soil Moisture Profile Conceptual Framework to Identify Water Availability and Recovery in Green Stormwater Infrastructure

Matina Shakya    
Amanda Hess    
Bridget M. Wadzuk and Robert G. Traver    

Resumen

The recovery of soil void space through infiltration and evapotranspiration processes within green stormwater infrastructure (GSI) is key to continued hydrologic function. As such, soil void space recovery must be well understood to improve the design and modeling and to provide realistic expectations of GSI performance. A novel conceptual framework of soil moisture behavior was developed to define the soil moisture availability at pre-, during, and post-storm conditions. It uses soil moisture measurements and provides seven critical soil moisture points (A, B, C, D, E, F, F?) that describe the soil?water void space recovery after a storm passes through a GSI. The framework outputs a quantification of a GSI subsurface hydrology, including average soil moisture, the duration of saturation, soil moisture recession, desaturation time, infiltration rates, and evapotranspiration (ET) rates. The outputs the framework provide were compared to the values that were obtained through more traditional measurements of infiltration (through spot field infiltration testing), ET (through a variety of methods to quantify GSI ET), soil moisture measurements (through the soil water characteristics curve), and the duration of saturation/desaturation time (through a simulated runoff test), all which provided a strong justification to the framework. This conceptual framework has several applications, including providing an understanding of a system?s ability to hold water, the post-storm recovery process, GSI unit processes (ET and infiltration), important water contents that define the soil?water relationship (such as field capacity and saturation), and a way to quantify long-term changes in performance all through minimal monitoring with one or more soil moisture sensors. The application of this framework to GSI design promotes a deeper understanding of the subsurface hydrology and site-specific soil conditions, which is a key advancement in the understanding of long-term performance and informing GSI design and maintenance.

 Artículos similares

       
 
Xiaotian Luo, Cong Yin, Yueqiang Sun, Weihua Bai, Wei Li and Hongqing Song    
Deep soil moisture data have wide applications in fields such as engineering construction and agricultural production. Therefore, achieving the real-time monitoring of deep soil moisture is of significant importance. Current soil monitoring methods face ... ver más
Revista: Water

 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Hatice Atalay, Adalet Dervisoglu and Ayse Filiz Sunar    
The Mediterranean region experiences the annual destruction of thousands of hectares due to climatic conditions. This study examines forest fires in Türkiye?s Antalya region, a Mediterranean high-risk area, from 2000 to 2023, analyzing 26 fires that each... ver más