ARTÍCULO
TITULO

A Comparison Study of Landslide Susceptibility Spatial Modeling Using Machine Learning

Nurwatik Nurwatik    
Muhammad Hidayatul Ummah    
Agung Budi Cahyono    
Mohammad Rohmaneo Darminto and Jung-Hong Hong    

Resumen

One hundred seventeen landslides occurred in Malang Regency throughout 2021, triggering the need for practical hazard assessments to strengthen the disaster mitigation process. In terms of providing a solution for investigating the location of landslides more precisely, this research aims to compare machine learning algorithms to produce an accurate landslide susceptibility model. This research applies three machine learning algorithms composed of RF (random forest), NB (naïve Bayes), and KNN (k-nearest neighbor) and 12 conditioning factors. The conditioning factors consist of slope, elevation, aspect, NDVI, geological type, soil type, distance from the fault, distance from the river, river density, TWI, land cover, and annual rainfall. This research performs seven models over three ratios between the training and testing dataset encompassing 50:50, 60:40, and 70:30 for KNN and NB algorithms and 70:30 for the RF algorithm. This research measures the performance of each model using eight parameters (ROC, AUC, ACC, SN, SP, BA, GM, CK, and MCC). The results indicate that RF 70:30 generates the best performance, witnessed by the evaluation parameters ACC (0.884), SN (0.765), GM (0.863), BA (0.857), CK (0.749), MCC (0.876), and AUC (0.943). Overall, seven models have reasonably good accuracy, ranging between 0.806 and 0.884. Furthermore, based on the best model, the study area is dominated by high susceptibility with an area coverage of 51%, which occurs in the areas with high slopes. This research is expected to improve the quality of landslide susceptibility maps in the study area as a foundation for mitigation planning. Furthermore, it can provide recommendations for further research in splitting ratio scenarios between training and testing data.

 Artículos similares

       
 
Nitesh Awasthi, Jayant Nath Tripathi, George P. Petropoulos, Pradeep Kumar, Abhay Kumar Singh, Kailas Kamaji Dakhore, Kripan Ghosh, Dileep Kumar Gupta, Prashant K. Srivastava, Kleomenis Kalogeropoulos, Sartajvir Singh and Dhiraj Kumar Singh    
This study involved an investigation of the long-term seasonal rainfall patterns in central India at the district level during the period from 1991 to 2020, including various aspects such as the spatiotemporal seasonal trend of rainfall patterns, rainfal... ver más
Revista: Hydrology

 
Ismail Fathy, Gamal M. Abdel-Aal, Maha Rashad Fahmy, Amira Fathy, Martina Zelenakova, Hany F. Abd-ElHamid, Jakub Racek and Ahmed Moustafa A. Moussa    
Urban flooding is a problem faced by most countries because of climate change. Without storm drainage systems, negative impacts may occur, such as traffic problems and increasing groundwater levels, especially in lowlands. The implementation of storm dra... ver más
Revista: Hydrology

 
Valentin Romanovski, Andrei Paspelau, Maksim Kamarou, Vitaly Likhavitski, Natalia Korob and Elena Romanovskaia    
Disinfection of surfaces with various functional purposes is a relevant measure for the inactivation of microorganisms and viruses. This procedure is used almost universally, from water treatment facilities to medical institutions and public spaces. Some... ver más
Revista: Water

 
Nuaman Ejaz, Aftab Haider Khan, Muhammad Shahid, Kifayat Zaman, Khaled S. Balkhair, Khalid Mohammed Alghamdi, Khalil Ur Rahman and Songhao Shang    
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to... ver más
Revista: Water

 
Chenkai Cai, Yi?an Hua, Huibin Yang, Jing Wang, Changhuai Wu, Helong Wang and Xinyi Shen    
Ecological droughts in rivers, as a new type of drought, have been greatly discussed in the past decade. Although various studies have been conducted to identify and evaluate ecological droughts in rivers from different indices, a forecast model for this... ver más
Revista: Water