ARTÍCULO
TITULO

Transfer Learning with Deep Neural Network toward the Prediction of Wake Flow Characteristics of Containerships

Min-Kyung Lee and Inwon Lee    

Resumen

In this study, deep neural network (DNN) and transfer learning (TL) techniques were employed to predict the viscous resistance and wake distribution based on the positions of flow control fins (FCFs) applied to containerships of various sizes. Both methods utilized data collected through computational fluid dynamics (CFD) analysis. The position of the flow control fin (FCF) and hull form information were utilized as input data, and the output data included viscous resistance coefficients and components of propeller axial velocity. The base DNN model was trained and validated using a source dataset from a 1000 TEU containership. The grid search cross-validation technique was employed to optimize the hyperparameters of the base DNN model. Then, transfer learning was applied to predict the viscous resistance and wake distribution for containerships of varying sizes. To enhance the accuracy of feature prediction with a limited amount of data, learning rate optimization was conducted. Transfer learning involves retraining and reconfiguring the base DNN model, and the accuracy was verified based on the fine-tuning method of the learning model. The results of this study can provide hull designers for containerships with performance evaluation information by predicting wake distribution, without relying on CFD analysis.

 Artículos similares

       
 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI

 
Md Easin Hasan and Amy Wagler    
Neuroimaging experts in biotech industries can benefit from using cutting-edge artificial intelligence techniques for Alzheimer?s disease (AD)- and dementia-stage prediction, even though it is difficult to anticipate the precise stage of dementia and AD.... ver más
Revista: AI

 
Kang Cao, Yongjie Zhang and Jianfei Feng    
As aviation technology advances, numerous new aircraft enter the market. These not only offer airlines technological and fuel efficiency advantages but also present the challenge of how to conduct pilots? aircraft-type transition training efficiently and... ver más
Revista: Aerospace

 
Jiahao Fan and Weijun Pan    
In recent years, automatic speech recognition (ASR) technology has improved significantly. However, the training process for an ASR model is complex, involving large amounts of data and a large number of algorithms. The task of training a new model for a... ver más
Revista: Aerospace