Resumen
Rail clips are essential components of rail fastening systems that clamp the rails to sleepers. Fatigue damage of rail clips has been recently reported in railway lines. However, there has been a lack of research investigating this fatigue issue. The KR-type rail fastening system has been recently developed and used in some domestic railways. This study aimed at evaluating the structural behavior and fatigue performance of the KR-type rail clip. The assembly test performed in the laboratory showed that the stresses induced in the rail clips after tightening, particularly at the stress concentration locations, exceeded the yield stress, indicating that the rail clip could be vulnerable to fatigue cracking when combined with the stress range during repeated trainloads. The finite element analysis results, which revealed a good correlation with the experiments, were used to evaluate the fatigue performance of the rail clip by adopting the modified Goodman fatigue criteria. The fatigue evaluation results indicated that when the vertical rail displacement during train operation exceeded 2 mm, the rail clips could potentially suffer from fatigue failure.