ARTÍCULO
TITULO

Detection of Physical Impacts of Shipping Containers during Handling Operations Using the Impact Detection Methodology

Sergej Jakovlev    
Tomas Eglynas    
Miroslav Voznak    
Mindaugas Jusis    
Pavol Partila    
Jaromir Tovarek and Valdas Jankunas    

Resumen

The transportation of cargo inside shipping containers is a risky operation that requires constant monitoring activities and real-time operational actions. Yet, the detection of the real dynamics of the container and the surrounding infrastructure and extraction of true subsequent critical events is still an unresolved issue among engineers. In this paper, we analyze the new physical impact detection method, namely the Impact Detection Methodology (IDM), to detect the most obvious and force-dependent impacts from acceleration data, using the IoT sensor in an experimental environment using the heavy machinery of a seaport. By variating the threshold level, we have observed the changes in the number of impacts detected within three separate case studies. Results suggest that the optimal parameters tend to provide an adequate number of events, yet even the slightest change in the threshold level can increase or decrease the number of detected impacts in a non-linear fashion, making the detection harder, due to unforeseen external impacts on the dataset, the filtering of which is still the main priority of our future research.

 Artículos similares

       
 
George Papageorgiou, Vangelis Sarlis and Christos Tjortjis    
This study utilized advanced data mining and machine learning to examine player injuries in the National Basketball Association (NBA) from 2000?01 to 2022?23. By analyzing a dataset of 2296 players, including sociodemographics, injury records, and financ... ver más
Revista: Information

 
Jaehan Jeon and Gerasimos Theotokatos    
Digital twins (DTs) are gradually employed in the maritime industry to represent the physical systems and generate datasets, among others. However, the trustworthiness of both the digital twins and datasets must be assured. This study aims at developing ... ver más

 
Morhaf Aljber, Han Soo Lee, Jae-Soon Jeong and Jonathan Salar Cabrera    
In tsunami studies, understanding the intricate dynamics in the swash area, characterised by the shoaling effect, remains a challenge. In this study, we employed the adaptive mesh refinement (AMR) method to model tsunami inundation and propagation in the... ver más

 
Hui-Jun Kim, Jung-Soon Kim and Sung-Hee Kim    
The existing question-and-answer screening test has a limitation in that test accuracy varies due to a high learning effect and based on the inspector?s competency, which can have consequences for rapid-onset cognitive-related diseases. To solve this pro... ver más
Revista: Applied Sciences

 
Sharoug Alzaidy and Hamad Binsalleeh    
In the field of behavioral detection, deep learning has been extensively utilized. For example, deep learning models have been utilized to detect and classify malware. Deep learning, however, has vulnerabilities that can be exploited with crafted inputs,... ver más
Revista: Applied Sciences