ARTÍCULO
TITULO

Artificial Neural Network-Based Prediction of the Extreme Response of Floating Offshore Wind Turbines under Operating Conditions

Kelin Wang    
Oleg Gaidai    
Fang Wang    
Xiaosen Xu    
Tao Zhang and Hang Deng    

Resumen

The development of floating offshore wind turbines (FOWTs) is gradually moving into deeper offshore areas with more harsh environmental loads, and the corresponding structure response should be paid attention to. Safety assessments need to be conducted based on the evaluation of the long-term extreme response under operating conditions. However, the full long-term analysis method (FLTA) recommended by the design code for evaluating extreme response statistics requires significant computational costs. In the present study, a power response prediction method for FOWT based on an artificial neural network algorithm is proposed. FOWT size, structure, and training algorithms from various artificial neural network models to determine optimal network parameters are investigated. A publicly available, high-quality operational dataset is used and processed by the Inverse First Order Reliability Method (IFORM), which significantly reduces simulation time by selecting operating conditions and directly yielding extreme response statistics. Then sensitivity analysis is done regarding the number of neurons and validation check values. Finally, the alternative dataset is used to validate the model. Results show that the proposed neural network model is able to accurately predict the extreme response statistics of FOWT under realistic in situ operating conditions. A proper balance was achieved between prediction accuracy, computational costs, and the robustness of the model.

 Artículos similares

       
 
Dimitris Papadopoulos and Vangelis D. Karalis    
Sample size is a key factor in bioequivalence and clinical trials. An appropriately large sample is necessary to gain valuable insights into a designated population. However, large sample sizes lead to increased human exposure, costs, and a longer time f... ver más
Revista: Applied Sciences

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
Tahsin Koroglu and Elanur Ekici    
In recent years, wind energy has become remarkably popular among renewable energy sources due to its low installation costs and easy maintenance. Having high energy potential is of great importance in the selection of regions where wind energy investment... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Omar Abdulkhaleq Aldabash and Mehmet Fatih Akay    
An IDS (Intrusion Detection System) is essential for network security experts, as it allows one to identify and respond to abnormal traffic present in a network. An IDS can be utilized for evaluating the various types of malicious attacks. Hence, detecti... ver más
Revista: Applied Sciences