Resumen
The rail transit station realm is an important urban spatial node that carries various behavioral activities and multiple functions. In order to accurately identify the spatial and temporal distribution of population activities and functional facilities in the rail transit station realm and understand the dynamic influence relationship between them, this paper takes four different types of stations of Xi?an Metro Line 2 as the research object, using real-time positioning data to represent population activities and points of interest (POIs) to represent functional facilities. An analytical framework combining the spatial point pattern identification technique and ordinary least squares (OLS) regression model is proposed. The results show that (1) there is spatial and temporal heterogeneity in the population activities in the rail transit station realm; the density distribution of population activities in different time periods shows the characteristic of clustering within 500 m of the station, regardless of working days or off days; (2) the distribution of shopping service POI, catering service POI, and living service POI in different station realms shows the feature of clustering around the stations; (3) the catering POI, living POI, shopping POI and transportation POI have positive attraction to population activities in different time periods; the constructed OLS model can basically explain the influence relationship between various functional facilities and population activities in all time periods. The conclusions can help city managers understand the spatial and temporal distribution and intrinsic mechanisms of population activities and functional facilities from a microscopic perspective and provide an effective decision-making basis for optimizing the allocation of functional resources in the station realm.