Inicio  /  Water  /  Vol: 9 Par: 10 (2017)  /  Artículo
ARTÍCULO
TITULO

Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

Bo Cao    
Shengmei Yang and Song Ye    

Resumen

Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combining remote sensing (RS), a geographic information system (GIS), and hydrological modeling. The Tangjiashan dammed lake induced by the Wenchuan earthquake was selected as the case for study. The elevation-versus-reservoir capacity curve was first calculated using the seed-growing algorithm based on digital elevation model (DEM) data. The simulated annealing algorithm was applied to train the hydrological modeling parameters according to the historical hydrologic data. Then, the downstream water elevation variational process under different collapse capacity conditions was performed based on the obtained parameters. Finally, the downstream potential impact area was estimated by the highest water elevation values at different hydrologic sections. Results show that a flood with a collapse elevation of at least 680 m will impact the entire downstream region of Beichuan town. We conclude that spatial information technology combined with hydrological modeling can accurately predict and demonstrate the potential impact area with limited data resources. This paper provides a better guide for future immediate responses to dammed lake hazard mitigation.

 Artículos similares

       
 
Marcin Aftowicz, Ievgen Kabin, Zoya Dyka and Peter Langendörfer    
While IoT technology makes industries, cities, and homes smarter, it also opens the door to security risks. With the right equipment and physical access to the devices, the attacker can leverage side-channel information, like timing, power consumption, o... ver más
Revista: Future Internet

 
Jhon B. Valencia, Vladimir V. Guryanov, Jeison Mesa-Diez, Nilton Diaz, Daniel Escobar-Carbonari and Artyom V. Gusarov    
This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios, SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the m... ver más
Revista: Hydrology

 
Ilias Siarkos, Zisis Mallios and Pericles Latinopoulos    
Groundwater nitrate contamination caused by the excessive use of nitrogen-based fertilizers has been widely recognized as an issue of significant concern in numerous rural areas worldwide. To mitigate nitrate contamination, corrective management practice... ver más
Revista: Hydrology

 
Natalia Torres-Pagán, Marta Muñoz, Sara Barbero, Roberta Mamone, Rosa Peiró, Alessandra Carrubba, Adela M. Sánchez-Moreiras, Diego Gómez de Barreda and Mercedes Verdeguer    
In recent years, interest in natural products with herbicidal activity as new tools for integrated weed management has increased. The European Union is demanding a reduction in the number of herbicides used, forbidding use of the most toxic ones, despite... ver más
Revista: Agronomy

 
Xin Tian and Yuan Meng    
Multi-relational graph neural networks (GNNs) have found widespread application in tasks involving enhancing knowledge representation and knowledge graph (KG) reasoning. However, existing multi-relational GNNs still face limitations in modeling the excha... ver más
Revista: Applied Sciences