Inicio  /  Applied Sciences  /  Vol: 11 Par: 13 (2021)  /  Artículo
ARTÍCULO
TITULO

Gaussian Parameters Correlate with the Spread of COVID-19 Pandemic: The Italian Case

Carmelo Corsaro    
Alessandro Sturniolo and Enza Fazio    

Resumen

Until today, numerous models have been formulated to predict the spreading of Covid-19. Among them, the actively discussed susceptible-infected-removed (SIR) model is one of the most reliable. Unfortunately, many factors (i.e., social behaviors) can influence the outcomes as well as the occurrence of multiple contributions corresponding to multiple waves. Therefore, for a reliable evaluation of the conversion rates, data need to be continuously updated and analyzed. In this work, we propose a model using Gaussian functions, coming from the solution of an ordinary differential equation representing a logistic model, able to describe the growth rate of infected, deceased and recovered people in Italy. We correlate the Gaussian parameters with the number of people affected by COVID-19 as a function of the large-scale anti-contagion control measures strength, and also of vaccines effects adopted to reach herd immunity. The superposition of gaussian curves allow modeling the growth rate of the total cases, deceased and recovered people and reproducing the corresponding cumulative distribution and probability density functions. Moreover, we try to predict a time interval in which all people will be infected or vaccinated (with at least one dose) and/or the time end of pandemic in Italy when all people have been infected or vaccinated with two doses.

 Artículos similares

       
 
Freddy Richard Apaza, Víctoriano Fernández Vázquez, Santiago Expósito Paje, Federico Gulisano, Valerio Gagliardi, Leticia Saiz Rodríguez and Juan Gallego Medina    
In the last decade, various asphalt paving materials have undergone investigation for sound attenuation purposes. This research aims to delve into the innovative design of sustainable road pavements by examining sound absorption in rubber-modified asphal... ver más
Revista: Infrastructures

 
Lin Ma, Fuheng Ma, Wenhan Cao, Benxing Lou, Xiang Luo, Qiang Li and Xiaoniao Hao    
A original strategy for optimizing the inversion of concrete dam parameters based on the multi-strategy improved Sooty Tern Optimization algorithm (MSSTOA) is proposed to address the issues of low efficiency, low accuracy, and poor optimizing performance... ver más
Revista: Water

 
Dacheng Yu, Mingjun Zhang, Feng Yao and Jitao Li    
Variational Mode Decomposition (VMD) has typically been used in weak fault feature extraction in recent years. The problem analyzed in this study is weak fault feature extraction and the enhancement of AUV thrusters based on Artificial Rabbits Optimizati... ver más

 
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin    
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro... ver más
Revista: Algorithms

 
Stanislav Kirpichenko, Lev Utkin, Andrei Konstantinov and Vladimir Muliukha    
A method for estimating the conditional average treatment effect under the condition of censored time-to-event data, called BENK (the Beran Estimator with Neural Kernels), is proposed. The main idea behind the method is to apply the Beran estimator for e... ver más
Revista: Algorithms