Inicio  /  Applied Sciences  /  Vol: 12 Par: 20 (2022)  /  Artículo
ARTÍCULO
TITULO

Machine Learning Approach Regarding the Classification and Prediction of Dog Sounds: A Case Study of South Indian Breeds

Prabu Mohandas    
Jerline Sheebha Anni    
Khairunnisa Hasikin    
Dhayalan Velauthapillai    
Veena Raj    
Thanihaichelvan Murugathas    
Muhammad Mokhzaini Azizan and Rajkumar Thanasekaran    

Resumen

Barking is a form of vocal communication made by dogs. Each type of bark made by dogs has a distinct context. The classification of dog bark pattern will aid in the understanding of barking action. In this study, a machine learning algorithm is used to analyze the pattern of barking from two different dog species: Rajapalayam Hound and Kombai Hound. The objective is to find the context of the dog barking pattern based on various real-time scenarios, including whether the dogs are alone, looking at strangers, or showing an eagerness to fight. The barks of the dogs were recorded inside the house under different scenarios, such as while identifying the owner or strangers. Machine learning algorithms, such as the reinforcement learning method, were used in predicting and classifying the dog sounds. Q-learning is a reinforcement learning that will generate the next best action for the given state. It is a model-free learning used to find the best course of dog action for the given current state of the dog. The Q-learning algorithm had been used in improving the prediction of dog sounds by updating the values of learning, where the values with the highest reward were taken into consideration. In total, 6171 barks were collected from the dogs chosen for study, and the proposed approach achieved a correct prediction accuracy of 85.19% of the dog sounds.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences